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Preface

Extracting image features has become a major player in many image pertaining
applications. Feature detectors and descriptors have been investigated and applied
in various domains such as computer vision, pattern recognition, image processing,
biometrics technology, and medical image analysis. Driven by the need for a better
understanding of the feature detector foundations and application, this book volume
presents up-to-date research findings in the direction of image feature detectors and
descriptors.

This book includes 16 chapters that are divided into two parts. Part I details the
“Foundations of Image Feature Detectors and Descriptors” by four chapters. The
rest of the 16 chapters, 11 chapters, are grouped in Part II for covering the
“Applications of Image Feature Detectors and Descriptors.” Additionally,
“Detection and Description of Image Features: An Introduction” is placed in the
beginning of the volume for offering an introduction for all the chapters in the two
parts of the volume.

This book has attracted authors from many countries from all over the world
such as Egypt, Canada, India, Mexico, and Romania. The authors of accepted
chapters are thanked by the editors for revising their chapters according to the
suggestions and comments of the book reviewers/editors.

The auditors are very grateful to Dr. Janusz Kacprzyk, the editor of the Studies
in Computational Intelligence (SCI) series by Springer. The editors are indebted to
the efforts of Dr. Thomas Ditzinger, the senior editor of the SCI series, and Holger
Schäpe, the editorial assistant of the SCI series. Finally, the editors and the authors
acknowledge the efforts of the Studies in Computational Intelligence team at
Springer for their support and cooperation in publishing the book as a volume in the
SCI series.

November 2015 Ali Ismail Awad
Mahmoud Hassaballah
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Detection and Description of Image Features:
An Introduction

M. Hassaballah and Ali Ismail Awad

Abstract Detection and description of image features play a vital role in various
application domains such as image processing, computer vision, pattern recognition,
and machine learning. There are two type of features that can be extracted from an
image content; namely global and local features. Global features describe the image
as a whole and can be interpreted as a particular property of the image involving all
pixels; while, the local features aim to detect keypoints within the image and describe
regions around these keypoints. After extracting the features and their descriptors
from images, matching of common structures between images (i.e., features match-
ing) is the next step for these applications. This chapter presents a general and brief
introduction to topics of feature extraction for a variety of application domains. Its
main aim is to provide short descriptions of the chapters included in this book volume.

Keywords Feature detection · Feature description · Feature matching · Image
processing · Pattern recognition · Computer vision · Applications

1 Introduction

Nowadays,we live in the era of technological revolution sparked by the rapid progress
in computer technology generally, and computer vision especially. Where, the last
few decades can be termed as an epoch of computer revolution, in which develop-
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2 M. Hassaballah and A.I. Awad

ments in one domain frequently entail breakthroughs in other domains. Scarcely,
a month passes where one does not hear an announcement of new technological
breakthroughs in the areas of digital computation. Computers and computational
workstations have become powerful enough to process big data. Additionally, the
technology is now available to every one all over the world. As a result, hardware
and multimedia software are becoming standard tools for the handling of images,
video sequence, and 3D visualization.

In particular, computer vision, the art of processing digital images stored within
the computer, became a key technology in several fields and is utilized as a core part
in a large number of industrial vision applications [1]. For instance, computer vision
systems are an important part of autonomous intelligent vehicle parking systems,
adaptive cruise control, driver exhaustion detection, obstacle or traffic sign detection
[2, 3], and driver assistance systems [4]. In industrial automation, computer vision is
routinely used for quality or process control such as food quality evaluation systems
[5]. Even the images used in astronomy and biometric systems or those captured by
intelligent robots as well as medical Computer Assisted Diagnosis (CAD) systems
benefit fromcomputer vision techniques [6].Abasic computer vision systemcontains
a camera for capturing images, a camera interface, and a PC to achieve some tasks
such as scene reconstruction, object recognition/tracking, 3D reconstruction, image
restoration, and image classification [7, 8]. These tasks rely basically on the detection
and extraction of image features.

Generally, feature extraction involves detecting and isolating desired features of
the image or pattern for identifying or interpreting meaningful information from the
image data. Thus, extracting image features has been considered one of the most
active topics for image representation in computer vision community [9]. Feature
extraction is also an essential pre-processing step in pattern recognition [10]. In
fact, image features can represent the content of either the whole image (i.e., global
features) or small patches of the image (i.e., local features) [11]. Since the global
features aim to represent the image as awhole, only a single feature vector is produced
per image and thus the content of two images can be compared via comparing their
feature vectors. On the contrary, for representing the image with local features, a set
of several local features extracted from different image’s patches is used. For local
features, feature extraction can often be divided into two independent steps: feature
detection and description. The main objective of a feature detector is to find a set of
stable (invariant) distinctive interest points or regions, while the descriptor encodes
information in spatial neighborhoods of the determined regionsmathematically. That
is, the descriptor is a vector characterizing local visual appearance or local structure
of image’s patches [12].

In this respect, the number of extracted features is usually smaller than the actual
number of pixels in the image. For instance, a 256 × 256 image contains 65536
pixels, yet the essence of this image may be captured using only few features (e.g.,
30 features). There are many types of image features which can be extracted such as
edges, blobs, corners, interest points, texture, and color [13–16]. A large number of
feature extraction algorithms have been proposed in the literature to provide reliable
feature matching [17–19]. Many feature extraction algorithms are proposed for a
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specific applications, where they prove significant success and fail otherwise because
of the different nature of the other applications. A thorough comparison and a detailed
analysis of many extraction algorithms based on different application scenarios are
reported in [11, 20–22]. On the other hand, several trails have been done to make
these algorithms robust to various image artifacts such as illumination variation, blur,
rotation, noise, scale and affine transformation as well as to improve their execution
time performance to be applicable in real time applications [23, 24].

The use of local feature detection and description algorithms in some applications
such as large volume, low-cost, low-power embedded systems, visual odometry, and
photogrammetric applications is still limited or negligible to date due to the lack of a
worldwide industry standard [22]. Further, most of the aforementioned applications
have real-time constraints and would benefit immensely from being able to match
images in a real time, thus developing fast feature extraction algorithms is a must.
With all these factors and avenues to explore, it is not surprising that the problem of
image feature extraction,with variousmeanings of this expression, is actively pursued
in research by highly qualified people and the volume of research will increase in the
near future, which has given us the motivation for dedicating this book to exemplify
the tremendous progress achieved recently in the topic.

2 Chapters of the Book

This volume contains 15 chapters in total which are divided into two categories. The
following are brief summaries for the content of each chapter.

Part I: Foundations of Image Feature Detectors and Descriptors

Chapter “Image Features Detection, Description and Matching” presents a com-
prehensive review on the available image feature detectors and descriptors such as
Moravec’s detector [25], Harris detector [26], Smallest Univalue Segment Assim-
ilating Nucleus (SUSAN) detector [27], Features from Accelerated Segment Test
(FAST) detector [28], Difference of Gaussian (DoG) detector [29], Scale invari-
ant feature transform (SIFT) descriptor [29], and Speeded-Up Robust Features
(SURF) descriptor [30]. The mathematical foundations of the presented detectors
and descriptors have been highlighted. In general, the chapter serves as a good
foundation for the rest of the volume.
Chapter “A Review of Image Interest Point Detectors: From Algorithms to FPGA
Hardware Implementations” studies some image interest point detectors from the
hardware implementation viewpoint [31]. The chapter offers a review on the
hardware implementation, particularity, using Field Programmable Gate Array
(FPGA), for image interest point detectors [32]. The chapter emphasizes the real-
time performance of FPGA as a hardware accelerator. However, further researches
are demanded for improving the accelerator portability across different platforms.

http://dx.doi.org/10.1007/978-3-319-28854-3_2
http://dx.doi.org/10.1007/978-3-319-28854-3_3
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Chapter “Image Features Extraction, Selection and Fusion for Computer Vision”
addresses various research problems pertaining to image segmentation, feature
extraction and selection, feature fusion and classification, with applications in
intelligent vehicle, biometrics [33–35], andmedical image processing. The chapter
describes different features for different applications from a holistic computer
vision perspective.
Chapter “Image Feature Extraction Acceleration” focuses on accelerating image
feature extraction process using hardware platforms [36]. It presents two focal-
plane accelerators chips, Application-specific Integrated Circuits (ASICs), that
aim at the acceleration of two flagship algorithms in computer vision. The chapter
offers the fundamental concepts driving the design and the implementation of two
focal-plane accelerator chips for the Viola-Jones face detection algorithm [37] and
for the Scale Invariant Feature Transform (SIFT) algorithm [29, 38].

Part II: Applications of Image Feature Detectors and Descriptors

Chapter “Satellite Image Matching and Registration: A Comparative Study Using
Invariant Local Features” is devoted for a comparative study for satellite image
registration using invariant local features. In this chapter, various local feature
detectors and descriptors, such as Features fromAccelerated Segment Test (FAST)
[28], Binary Robust Invariant Scalable Keypoints (BRISK) [39], Maximally Sta-
ble Extremal Regions (MSER) [40], and Good Features to Track (GTT) [41],
have been evaluated on different optical and satellite image data sets in terms of
feature extraction, features matching, and geometric transformation. The chapter
documents the performance of the selected feature detectors for the comparison
purpose.
Chapter “Redundancy Elimination in Video Summarization” addresses the redun-
dancy elimination from video summarization using feature point descriptors such
as Binary Robust Independent Elementary Features (BRIEF) [42] and Oriented
FAST and Rotated BRIEF (ORB) [43]. A method for intra-shot and inter-shot
redundancy removal using similarity metric computed from feature descriptors
has been presented. Several feature descriptors have been tested and evaluated for
redundancy removal with a focus on precision and recall performance parameters.
Chapter “A Real Time Dactylology Based Feature Extractrion for Selective Image
Encryption and Artificial Neural Network” combines artificial neural network
with Speeded-Up Robust Features Descriptor (SURF) [30] for selective image
encryption in real time dactylology or finger spelling. Finer spelling is used in
different sign languages and for different purposes [44]. The integrity and the
effectiveness of the proposed scheme have been judged using different factors like
histogram, correlation coefficients, entropy, MSE, and PSNR.
Chapter “Spectral Reflectance Images andApplications” illustrates the use of spec-
tral invariant for obtaining reliable spectral reflectance images. Spectral imaging
can be deployed, for example, in remote sensing, computer vision, industrial appli-
cations, material identification, natural scene rendering, and colorimetric analysis
[45]. The chapter introduces a material classification method based on the invari-

http://dx.doi.org/10.1007/978-3-319-28854-3_4
http://dx.doi.org/10.1007/978-3-319-28854-3_5
http://dx.doi.org/10.1007/978-3-319-28854-3_6
http://dx.doi.org/10.1007/978-3-319-28854-3_7
http://dx.doi.org/10.1007/978-3-319-28854-3_8
http://dx.doi.org/10.1007/978-3-319-28854-3_9
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ant representation that results in reliable segmentation of natural scenes and raw
circuit board spectral images.
Chapter “Image Segmentation Using an EvolutionaryMethod Based on Allostatic
Mechanisms” proposes a multi-thresholding segmentation algorithm that is based
on an evolutionary algorithm called Allostatic Optimization (AO). Threshold-
based segmentation is considered as a simple technique due to the assumption
that the object and the background have different grey level distribution [46]. The
experimental work shows the high performance of the proposed segmentation
algorithm with respect to accuracy and robustness.
Chapter “Image Analysis and Coding Based on Ordinal Data Representation”
utilizes the Ordinal Measures (OM) [47] for image analysis and coding with an
application on iris image as a biometric identifier. Biometrics is a mechanism for
assigning an identity to an individual based on some physiological or behavioral
characteristics. Biometric identifiers include fingerprints, face image, iris patterns,
retinal scan, voice, and signature with broad deployments in forensic and civilian
applications [48].
Chapter “Intelligent Detection of Foveal Zone from Colored Fundus Images of
Human Retina Through a Robust Combination of Fuzzy-Logic and Active Con-
tour Model” proposes a robust fuzzy-rule based image segmentation algorithm for
extracting the Foveal Avascular Zone (FAZ) from retinal images [49]. The pro-
posed algorithm offers a good contribution toward improving the deployment of
retinal images in biometrics-based human identification and verification.
Chapter “Registration of Digital Terrain Images Using Nondegenerate Singular
Points” presents a registration algorithm for digital terrain images using nonde-
generate singular points. The proposed algorithm is a graph-theoretic technique
that uses Morse singularities [50] and an entopic dissimilarity measure [51]. The
experimental outcomes prove the reliability and the accuracy in addition to the
high computational speed of the proposed algorithm.
Chapter “Visual Speech Recognition with Selected Boundary Descriptors” is
devoted for visual speech recognition using some selected boundary descriptors.
Lipreading can be used for speech-to-text for the benefit of hearing impaired indi-
viduals. In the chapter, the Point Distribution Model (PDM) [52] is used to obtain
the lip contour, and the Minimum Redundancy Maximum Relevance (mRMR)
[53] approach is used as a following stage for feature selection.
Chapter “Application of Texture Features for Classification of Primary Benign and
Primary Malignant Focal Liver Lesions” focuses on the classification of the pri-
mary benign and primary malignant local liver lesions. Statistical texture features,
spectral texture features, and spatial filtering based texture feature have been used.
In addition, Support Vector Machine (SVM) [54, 55] and Smooth Support Vector
Machine (SSVM) [56] have been evaluated as two classification algorithms.
Chapter “Application of Statistical Texture Features for Breast Tissue Density
Classification” aims to classify the density of the breast tissues using statistical
features extracted from mammographic images. It presents a CAD system that is
formed from feature extraction module, feature space dimensionality reduction
module, and feature classification module. Different algorithms have been used in

http://dx.doi.org/10.1007/978-3-319-28854-3_10
http://dx.doi.org/10.1007/978-3-319-28854-3_11
http://dx.doi.org/10.1007/978-3-319-28854-3_12
http://dx.doi.org/10.1007/978-3-319-28854-3_13
http://dx.doi.org/10.1007/978-3-319-28854-3_14
http://dx.doi.org/10.1007/978-3-319-28854-3_15
http://dx.doi.org/10.1007/978-3-319-28854-3_16
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the classificationmodule such as k-Nearest Neighbor (kNN) [57, 58], Probabilistic
Neural Network (PNN) [59], and Support Vector Machine (SVM) classifiers.

3 Concluding Remarks

Detection and description of image features play a vital role in various application
domains such as image processing, computer vision, pattern recognition, machine
learning, biometrics, and automation. In this book volume, cutting-edge research
contributions on image feature extraction, feature detectors, and feature extractors
have been introduced. The presented contributions support the vitality of image
feature detectors and descriptors, and discover new research gaps in the theoretical
foundations and the practical implementations of image detectors and descriptors.
Due to the rapid growth in representing image using local and global features, further
contributions and findings are anticipated in this research domain.
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Image Features Detection, Description
and Matching

M. Hassaballah, Aly Amin Abdelmgeid and Hammam A. Alshazly

Abstract Feature detection, description and matching are essential components of
various computer vision applications, thus they have received a considerable attention
in the last decades. Several feature detectors anddescriptors have beenproposed in the
literaturewith a variety of definitions forwhat kind of points in an image is potentially
interesting (i.e., a distinctive attribute). This chapter introduces basic notation and
mathematical concepts for detecting and describing image features. Then, it discusses
properties of perfect features and gives an overview of various existing detection and
description methods. Furthermore, it explains some approaches to feature matching.
Finally, the chapter discusses the most used techniques for performance evaluation
of detection and description algorithms.

Keywords Interest points · Feature detector · Feature descriptor · Feature extrac-
tion · Feature matching

1 Introduction

Over the last decades, image feature detectors and descriptors have become popular
tools in the computer vision community and they are being applied widely in a
large number of applications. Image representation [1], image classification and
retrieval [2–5], object recognition andmatching [6–10], 3Dscene reconstruction [11],
motion tracking [12–14], texture classification [15, 16], robot localization [17–19],
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and biometrics systems [20–22], all rely on the presence of stable and representative
features in the image. Thus, detecting and extracting the image features are vital
steps for these applications.

In order to establish correspondences among a collection of images, where fea-
ture correspondences between two or more images are needed, it is necessary to
identify a set of salient points in each image [8, 23]. In a classification task, fea-
ture descriptors of a query image are matched with all trained image features and
the trained image giving maximum correspondence is considered the best match. In
that case, feature descriptor matching can be based on distance measures such as
Euclidean or Mahalanobis. In image registration, it is necessary to spatially align
two or more images of a scene captured by different sensors at different times. The
main steps involved in performing image registration or alignment tasks are: feature
detection, feature matching, derivation of transformation functions based on cor-
responding features in images, and reconstruction of images based on the derived
transformation functions [24]. In the context of matching and recognition, the first
step of any matching/recognition system is to detect interest locations in the images
and describe them. Once the descriptors are computed, they can be compared to find
a relationship between images for performing matching/recognition tasks. Also, for
online street-level virtual navigation application, we need a feature detector and a
feature descriptor to extract features from planar images (panoramic images) [25].

The basic idea is to first detect interest regions (keypoints) that are covariant
to a class of transformations. Then, for each detected regions, an invariant feature
vector representation (i.e., descriptor) for image data around the detected keypoint
is built. Feature descriptors extracted from the image can be based on second-order
statistics, parametric models, coefficients obtained from an image transform, or even
a combination of these measures. Two types of image features can be extracted
form image content representation; namely global features and local features. Global
features (e.g., color and texture) aim to describe an image as a whole and can be
interpreted as a particular property of the image involving all pixels. While, local
features aim to detect keypoints or interest regions in an image and describe them. In
this context, if the local feature algorithm detects n keypoints in the image, there are
n vectors describing each one’s shape, color, orientation, texture and more. The use
of global colour and texture features are proven surprisingly successful for finding
similar images in a database,while the local structure oriented features are considered
adequate for object classification or finding other occurrences of the same object
or scene [26]. Meanwhile, the global features can not distinguish foreground from
background of an image, and mix information from both parts together [27].

On the other hand, as the real time applications have to handle ever more data or
to run on mobile devices with limited computational capabilities, there is a growing
need for local descriptors that are fast to compute, fast to match, memory efficient,
and yet exhibiting good accuracy. Additionally, local feature descriptors are proven
to be a good choice for imagematching tasks on amobile platform, where occlusions
and missing objects can be handled [18]. For certain applications, such as camera
calibration, image classification, image retrieval, and object tracking/recognition, it
is very important for the feature detectors and descriptors to be robust to changes
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in brightness or viewpoint and to image distortions (e.g., noise, blur, or illumina-
tion) [28]. While, other specific visual recognition tasks, such as face detection or
recognition, requires the use of specific detectors and descriptors [29].

In the literature, a large variety of feature extraction methods have been proposed
to compute reliable descriptors. Some of these feature descriptors were exclusively
designed for a specific application scenario such as shape matching [29, 30]. Among
these descriptors, the scale invariant feature transform (SIFT) descriptor [31] utilizing
local extrema in a series of difference of Gaussian (DoG) functions for extracting
robust features and the speeded-up robust features (SURF) descriptor [32] partly
inspired by the SIFT descriptor for computing distinctive invariant local features
quickly are the most popular and widely used in several applications. These descrip-
tors represent salient image regions by using a set of hand-crafted filters and non-
linear operations. In the rest of the chapter, we give an overview for these methods
and algorithms as well as their improvements proposed by developers. Furthermore,
the basic notations and mathematical concepts for detecting and describing image
features are introduced. We also explore in detail what is the quantitative relation
between the detectors and descriptors as well as how to evaluate their performance.

2 Definitions and Principles

2.1 Global and Local Features

In image processing and computer vision tasks, we need to represent the image by
features extracted therefrom. The raw image is perfect for the human eye to extract
all information from; however that is not the case with computer algorithms. There
are generally two methods to represent images, namely, global features and local
features. In the global feature representation, the image is represented by one multi-
dimensional feature vector, describing the information in the whole image. In other
words, the global representation method produces a single vector with values that
measure various aspects of the image such as color, texture or shape. Practically, a
single vector from each image is extracted and then two images can be compared by
comparing their feature vectors. For example, when one wants to distinguish images
of a sea (blue) and a forest (green), a global descriptor of color would produce quite
different vectors for each category. In this context, global features can be interpreted
as a particular property of image involving all pixels. This property can be color
histograms, texture, edges or even a specific descriptor extracted from some filters
applied to the image [33]. On the other hand, the main goal of local feature repre-
sentation is to distinctively represent the image based on some salient regions while
remaining invariant to viewpoint and illumination changes. Thus, the image is rep-
resented based on its local structures by a set of local feature descriptors extracted
from a set of image regions called interest regions (i.e., keypoints) as illustrated in
Fig. 1. Most local features represent texture within the image patch.
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Fig. 1 Global and local image features representation

Generally, using what kind of features might greatly depend on the applications
on hand. Developers prefer the most discriminative ones. For example, a person with
a bigger nose and smaller eyes, and a person with a smaller nose and bigger eyes
may have similar mug shot in terms of histogram or intensity distribution. Then, local
features or the global pattern distilled from local feature clusters seem to be more
discriminative. Whereas, for very large datasets in the web-scale image indexing
application, it is appropriate to consider global features. Also, global features are
useful in applications where a rough segmentation of the object of interest is avail-
able. The advantages of global features are that they are much faster and compact
while easy to compute and generally require small amounts of memory. Neverthe-
less, the global representation suffers fromwell-known limitations, in particular they
are not invariant to significant transformations and sensitive to clutter and occlusion.
In some applications, such as copy detection, most of the illegal copies are very
similar to the original; they have only suffered from compression, scaling or limited
cropping. In contrast, the advantage of local features is their superior performance
[34]. Meanwhile, using local features for large-scale image search have much higher
performance than global features provide [35]. Besides, as the local structures are
more distinctive and stable than other structures in smooth regions, it is expected
to be more useful for image matching and object recognition. However, they usu-
ally require a significant amount of memory because the image may have hundreds
of local features. As a solution for this problem, researchers suggest aggregating
local image descriptors into a very compact vector representation and optimizing the
dimensionality reduction of these vectors [35].

2.2 Characteristics of Feature Detectors

Tuytelaars and Mikolajczyk [27] define a local feature as “it is an image pattern
which differs from its immediate neighborhood”. Thus, they consider the purpose of
local invariant features is to provide a representation that allows to efficiently match
local structures between images. That is, we want to obtain a sparse set of local
measurements that capture the essence of the underlying input images and encode
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their interesting structures. To meet this goal, the feature detectors and extractors
must have certain properties keeping in mind that the importance of these properties
depends on the actual application settings and compromises need to be made. The
following properties are important for utilizing a feature detector in computer vision
applications:

• Robustness, the feature detection algorithm should be able to detect the same fea-
ture locations independent of scaling, rotation, shifting, photometric deformations,
compression artifacts, and noise.

• Repeatability, the feature detection algorithm should be able to detect the same
features of the same scene or object repeatedly under variety of viewing conditions.

• Accuracy, the feature detection algorithm should accurately localize the image
features (same pixel locations), especially for imagematching tasks, where precise
correspondences are needed to estimate the epipolar geometry.

• Generality, the feature detection algorithm should be able to detect features that
can be used in different applications.

• Efficiency, the feature detection algorithm should be able to detect features in new
images quickly to support real-time applications.

• Quantity, the feature detection algorithm should be able to detect all or most of the
features in the image. Where, the density of detected features should reflect the
information content of the image for providing a compact image representation.

2.3 Scale and Affine Invariance

Actually, finding correspondences based on comparing regions of fixed shape like
rectangles or circles are not reliable in the presence of some geometric and photo-
metric deformations as they affect the regions’ shapes. Also, objects in digital images
appear in different ways depending on the scale of observation. Consequently, scale
changes are of important implications when analyzing image contents. Different
techniques have been proposed to address the problem of detecting and extracting
invariant image features under these conditions. Some are designed to handle scale
changes, while others go further to handle affine transformations. In order to address
the scale changes, these techniques assume that the change in scale is same in all
directions (i.e., uniform) and they search for stable features across all possible scales
using a continuous kernel function of scale known as scale space. Where, the image
size is varied and a filter (e.g., Gaussian filter) is repeatedly applied to smooth sub-
sequent layers, or by leaving the original image unchanged and varies only the filter
size as shown in Fig. 2. More details about feature detection with scale changes can
be found in [36], where a framework is presented for generating hypotheses about
interesting scale levels in image data by searching for scale-space extrema in the
scale normalized Laplacian of Gaussian (LoG).

On the other hand, in the case of an affine transformation the scaling can be dif-
ferent in each direction. The nonuniform scaling has an influence on the localization,
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Fig. 2 Constructing the scale space structure

the scale and the shape of the local structure. Therefore, the scale invariant detec-
tors fail in the case of significant affine transformations. Hence, detectors designed
to detect the image features under uniform scaling need to be extended to be affine
invariant detectors that can detect the affine shape of the local image structures. Thus,
these affine invariant detectors can be seen as a generalization of the scale invariant
detector.

Generally, affine transformations are constructed using sequences of translations,
scales, flips, rotations, and shears. An affine transformation (affinity) is any linear
mapping that preserves collinearity and ratios of distances. In this sense, affine indi-
cates a special class of projective transformations that do not move any object from
the affine space R3 to the plane at infinity or conversely. Briefly, the affine transfor-
mation of Rn is a map f : Rn → R

n of the form

f (Y) = AY + B (1)

for all Y ∈ R
n, where A is a linear transformation of Rn. In some special cases, if

det(A) > 0, the transformation is called orientation-preserving,while, if det(A) < 0,
it is orientation-reversing. It is well known that a function is invariant under a certain
family of transformations if its value does not change when a transformation from
this family is applied to its argument. The second moment matrix provides the theory
for estimating affine shape of the local image features. Examples of affine invariant
detectors are Harris-affine, Hessian-affine, and maximally stable extremal regions
(MSER). It must be borne in mind that the detected features by these detectors are
transformed from circles to ellipses.

3 Image Feature Detectors

Feature detectors can be broadly classified into three categories: single-scale detec-
tors, multi-scale detectors, and affine invariant detectors. In a nutshell, single scale
means that there is only one representation for the features or the object contours
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using detector’s internal parameters. The single-scale detectors are invariant to image
transformations such as rotation, translation, changes in illuminations and addition
of noise. However, they are incapable to deal with the scaling problem. Given two
images of the same scene related by a scale change, we want to determine whether
same interest points can be detected or not. Therefore, it is necessary to build multi-
scale detectors capable of extracting distinctive features reliably under scale changes.
Details of single-scale and multi-scale detectors as well as affine invariant detectors
are discussed in the following sections.

3.1 Single-Scale Detectors

3.1.1 Moravec’s Detector

Moravec’s detector [37] is specifically interested in finding distinct regions in the
image that could be used to register consecutive image frames. It has been used as a
corner detection algorithm in which a corner is a point with low self-similarity. The
detector tests each pixel in a given image to see if a corner is present. It considers a
local image patch centered on the pixel and then determines the similarity between
the patch and the nearby overlapping patches. The similarity is measured by taking
the sum of square differences (SSD) between the centered patch and the other image
patches. Based on the value of SSD, three cases need to be considered as follows:

• If the pixel in a region of uniform intensity, then the nearby patches will look
similar or a small change occurs.

• If the pixel is on an edge, then the nearby patches in a parallel direction to the
edge will result in a small change and the patches in a direction perpendicular to
the edge will result in a large change.

• If the pixel is on a location with large change in all directions, then none of the
nearby patches will look similar and the corner can be detected when the change
produced by any of the shifts is large.

The smallest SSD between the patch and its neighbors (horizontal, vertical and
on the two diagonals) is used as a measure for cornerness. A corner or an interest
point is detected when the SSD reaches a local maxima. The following steps can be
applied for implementing Moravec’s detector:

1. Input: gray scale image, window size, threshold T
2. For each pixel (x, y) in the image compute the intensity variation V from a shift

(u, v) as

Vu,v(x, y) =
∑

∀a,b∈window

[I(x + u + a, y + v + b) − I(x + a, y + b)]2 (2)
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Fig. 3 Performing the
non-maximum suppression

3. Construct the cornerness map by calculating the cornerness measure C(x, y) for
each pixel (x, y)

C(x, y) = min(Vu,v(x, y)) (3)

4. Threshold the cornerness map by setting all C(x, y) below the given threshold
value T to zero.

5. Perform non-maximum suppression to find local maxima. All non-zero points
remaining in the cornerness map are corners.

For performing non-maximum suppression, an image is scanned along its gradient
direction, which should be perpendicular to an edge. Any pixel that is not a local
maximum is suppressed and set to zero. As illustrated in Fig. 3, p and r are the
two neighbors along the gradient direction of q. If the pixel value of q is not larger
than the pixel values of both p and r, it is suppressed. One advantage of Moravec’s
detector is that, it can detect majority of the corners. However, it is not isotropic;
intensity variation is calculated only at a discrete set of shifts (i.e., the eight principle
directions) and any edge is not in one of the eight neighbors’ directions is assigned
a relatively large cornerness measure. Thus, it is not invariant to rotation resulting in
the detector is of a poor repeatability rate.

3.1.2 Harris Detector

Harris and Stephens [38] have developed a combined corner and edge detector to
address the limitations of Moravec’s detector. By obtaining the variation of the auto-
correlation (i.e., intensity variation) over all different orientations, this results in a
more desirable detector in terms of detection and repeatability rate. The resulting
detector based on the auto-correlation matrix is the most widely used technique.
The 2 × 2 symmetric auto-correlation matrix used for detecting image features and
describing their local structures can be represented as

M(x, y) =
∑

u,v

w(u, v) ∗
⎡

⎣
I2x (x, y) IxIy(x, y)

IxIy(x, y) I2y (x, y)

⎤

⎦ (4)
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Fig. 4 Classification of image points based on the eigenvalues of the autocorrelation matrix M

where Ix and Iy are local image derivatives in the x and y directions respectively,
and w(u, v) denotes a weighting window over the area (u, v). If a circular window
such as a Gaussian is used, then the response will be isotropic and the values will be
weighted more heavily near the center. For finding interest points, the eigenvalues of
the matrixM are computed for each pixel. If both eigenvalues are large, this indicates
existence of the corner at that location. An illustrating diagram for classification of
the detected points is shown in Fig. 4. Constructing the response map can be done
by calculating the cornerness measure C(x, y) for each pixel (x, y) using

C(x, y) = det(M) − K(trace(M))2 (5)

where
det(M) = λ1 ∗ λ2, and trace(M) = λ1 + λ2 (6)

TheK is an adjusting parameter and λ1, λ2 are the eigenvalues of the auto-correlation
matrix. The exact computation of the eigenvalues is computationally expensive, since
it requires the computation of a square root. Therefore, Harris suggested using this
cornerness measure that combines the two eigenvalues in a single measure. The non-
maximum suppression should be done to find local maxima and all non-zero points
remaining in the cornerness map are the searched corners.

3.1.3 SUSAN Detector

Instead of using image derivatives to compute corners, Smith and Brady [39] intro-
duced a generic low-level image processing technique called SUSAN (Smallest
Univalue Segment Assimilating Nucleus). In addition to being a corner detector,
it has been used for edge detection and image noise reduction. A corner is detected
by placing a circular mask of fixed radius to every pixel in the image. The center pixel
is referred to as the nucleus, where pixels in the area under the mask are compared
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with the nucleus to check if they have similar or different intensity values. Pixels hav-
ing almost the same brightness as the nucleus are grouped together and the resulting
area is termed USAN (Univalue Segment Assimilating Nucleus). A corner is found
at locations where the number of pixels in the USAN reaches a local minimum and
below a specific threshold value T . For detecting corners, the similar comparison
function C(r, r0) between each pixel within the mask and mask’s nucleus is given
by

C(r, r0) =
⎧
⎨

⎩

1, if |I(r) − I(r0)| ≤ T ,

0, otherwise,
(7)

and the size of USAN region is

n(r0) =
∑

r∈c(r0)

C(r, r0) (8)

where r0 and r are nucleus’s coordinates and the coordinates of other points within
the mask, respectively. The performance of SUSAN corner detector mainly depends
on the similar comparison function C(r, r0), which is not immune to certain factors
impacting imaging (e.g., strong luminance fluctuation and noises).

SUSAN detector has some advantages such as: (i) no derivatives are used, thus,
no noise reductions or any expensive computations are needed; (ii) High repeata-
bility for detecting features; and (iii) invariant to translation and rotation changes.
Unfortunately, it is not invariant to scaling and other transformations, and a fixed
global threshold is not suitable for general situation. The corner detector needs an
adaptive threshold and the shape of mask should be modified.

3.1.4 FAST Detector

FAST (Features fromAccelerated Segment Test) is a corner detector originally devel-
oped by Rosten and Drummondn [40, 41]. In this detection scheme, candidate points
are detected by applying a segment test to every image pixel by considering a circle
of 16 pixels around the corner candidate pixel as a base of computation. If a set of
n contiguous pixels in the Bresenham circle with a radius r are all brighter than the
intensity of candidate pixel (denoted by Ip) plus a threshold value t, Ip + t, or all
darker than the intensity of candidate pixel minus the threshold value Ip − t, then p is
classified as a corner. A high-speed test can be used to exclude a very large number
of non-corner points; the test examines only the four pixels 1, 5, 9 and 13. A corner
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Fig. 5 Feature detection in an image patch using FAST detector [41]

can only exist if three of these test pixels are brighter than Ip + t or darker than Ip − t
and the rest of pixels are then examined for final conclusion. Figure5 illustrates the
process, where the highlighted squares are the pixels used in the corner detection.
The pixel at p is the center of a candidate corner. The arc is indicated by the dashed
line passes through 12 contiguous pixels which are brighter than p by a threshold.
The best results are achieved using a circle with r = 3 and n = 9.

Although the high speed test yields high performance, it suffers from several
limitations andweakness as mentioned in [41]. An improvement for addressing these
limitations and weakness points is achieved using a machine learning approach. The
ordering of questions used to classify a pixel is learned by using the well-known
decision tree algorithm (ID3), which speeds this step up significantly. As the first
test producesmany adjacent responses around the interest point, an additional criteria
is applied to perform a non-maximum suppression. This allows for precise feature
localization. The used cornerness measure at this step is

C(x, y) = max(
∑

j∈Sbright

|Ip→j − Ip| − t,
∑

j∈Sdark

|Ip − Ip→j| − t) (9)

where Ip→j denotes the pixels laying on theBresenhamcircle. In thisway, the process-
ing time remains short because the second test is performed only on a fraction of
image points that passed the first test.

In other words, the process operates in two stages. First, corner detection with a
segment test of a given n and a convenient threshold is performed on a set of images
(preferably from the target application domain). Each pixel of the 16 locations on
the circle is classified as darker, similar, or brighter. Second, employing the ID3
algorithm on the 16 locations to select the one that yields the maximum information
gain. The non-maximum suppression is applied on the sum of the absolute difference
between the pixels in the contiguous arc and the center pixel. Notice that the corners
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detected using the ID3 algorithm may be slightly different from the results obtained
with segment test detector due to the fact that decision tree model depends on the
training data, which could not cover all possible corners. Compared to many existing
detectors, the FAST corner detector is very suitable for real-time video processing
applications because of its high-speed performance. However, it is not invariant to
scale changes and not robust to noise, as well as it depends on a threshold, where
selecting an adequate threshold is not a trivial task.

3.1.5 Hessian Detector

The Hessian blob detector [42, 43] is based on a 2 × 2 matrix of second-order
derivatives of image intensity I(x, y), called the Hessian matrix. This matrix can be
used to analyze local image structures and it is expressed in the form

H(x, y, σ ) =
⎡

⎣
Ixx(x, y, σ ) Ixy(x, y, σ )

Ixy(x, y, σ ) Iyy(x, y, σ )

⎤

⎦ (10)

where Ixx, Ixy, and Iyy are second-order image derivatives computed using Gaussian
function of standard deviation σ . In order to detect interest features, it searches for a
subset of pointswhere the derivatives responses are high in two orthogonal directions.
That is, the detector searches for points where the determinant of the Hessian matrix
has a local maxima

det(H) = IxxIyy − I2xy (11)

By choosing points that maximize the determinant of the Hessian, this measure
penalizes longer structures that have small second derivatives (i.e., signal changes)
in a single direction. Applying non-maximum suppression using a window of size
3 × 3 over the entire image, keeping only pixels whose value is larger than the values
of all eight immediate neighbors inside the window. Then, the detector returns all the
remaining locations whose value is above a pre-defined threshold T . The resulting
detector responses are mainly located on corners and on strongly textured image
areas. While, the Hessian matrix is used for describing the local structure in a neigh-
borhood around a point, its determinant is used to detect image structures that exhibit
signal changes in two directions. Compared to other operators such as Laplacian, the
determinant of the Hessian responds only if the local image pattern contains signif-
icant variations along any two orthogonal directions [44]. However, using second
order derivatives in the detector is sensitive to noise. In addition, the local maxima
are often found near contours or straight edges, where the signal changes in only one
direction [45]. Thus, these local maxima are less stable as the localization is affected
by noise or small changes in neighboring pattern.
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3.2 Multi-scale Detectors

3.2.1 Laplacian of Gaussian (LoG)

Laplacian-of-Gaussian (LoG), a linear combination of second derivatives, is a com-
mon blob detector. Given an input image I(x, y), the scale space representation of
the image defined by L(x, y, σ ) is obtained by convolving the image by a variable
scale Gaussian kernel G(x, y, σ ) where

L(x, y, σ ) = G(x, y, σ ) ∗ I(x, y) (12)

and

G(x, y, σ ) = 1

2πσ 2
e

−(x2+y2)

2σ2 (13)

For computing the Laplacian operator, the following formula is used

∇2L(x, y, σ ) = Lxx(x, y, σ ) + Lyy(x, y, σ ) (14)

This results in strong positive responses for dark blobs and strong negative
responses for bright blobs of size

√
2σ . However, the operator response is strongly

dependent on the relationship between the size of the blob structures in the image
domain and the size of the smoothing Gaussian kernel. The standard deviation of the
Gaussian is used to control the scale by changing the amount of blurring. In order
to automatically capture blobs of different size in the image domain, a multi-scale
approach with automatic scale selection is proposed in [36] through searching for
scale space extrema of the scale-normalized Laplacian operator.

∇2
normL(x, y, σ ) = σ 2(Lxx(x, y, σ )+Lyy(x, y, σ ) (15)

Which can also detect points that are simultaneously local maxima/minima of
∇2

normL(x, y, σ ) with respect to both space and scale. The LoG operator is circularly
symmetric; it is therefore naturally invariant to rotation. The LoG is well adapted
to blob detection due to this circular symmetry property, but it also provides a good
estimation of the characteristic scale for other local structures such as corners, edges,
ridges and multi-junctions. In this context, the LoG can be applied for finding the
characteristic scale for a given image location or for directly detecting scale-invariant
regions by searching for 3D (location + scale) extrema of the LoG function as illus-
trated in Fig. 6. The scale selection properties of the Laplacian operator are studied
in detail in [46].
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Fig. 6 Searching for 3D scale space extrema of the LoG function

3.2.2 Difference of Gaussian (DoG)

In fact, the computation of LoG operators is time consuming. To accelerate the com-
putation, Lowe [31] proposed an efficient algorithm based on local 3D extrema in the
scale-space pyramid built with Difference-of-Gaussian(DoG) filters. This approach
is used in the scale-invariant feature transform (SIFT) algorithm. In this context,
the DoG gives a close approximation to the Laplacian-of-Gaussian (LoG) and it is
used to efficiently detect stable features from scale-space extrema. The DoG function
D(x, y, σ ) can be computed without convolution by subtracting adjacent scale levels
of a Gaussian pyramid separated by a factor k.

D(x, y, σ ) = (G(x, y, kσ) − G(x, y, σ )) ∗ I(x, y)

= L(x, y, kσ) − L(x, y, σ )
(16)

Feature types extracted by DoG can be classified in the same way as for the
LoG operator. Also, the DoG region detector searches for 3D scale space extrema
of the DoG function as shown in Fig. 7. The computation of LoG operators is time
consuming. The common drawback of both the LoG and DoG representations is that
the local maxima can also be detected in neighboring contours of straight edges,
where the signal change is only in one direction, which make them less stable and
more sensitive to noise or small changes [45].
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Fig. 7 Searching for 3D scale space extrema in the DoG function [31]

3.2.3 Harris-Laplace

Harris-Laplace is a scale invariant corner detector proposed by Mikolajczyk and
Schmid [45]. It relies on a combination of Harris corner detector and a Gaussian
scale space representation. Although Harris-corner points have been shown to be
invariant to rotation and illumination changes, the points are not invariant to the
scale. Therefore, the second-moment matrix utilized in that detector is modified to
make it independent of the image resolution. The scale adapted second-moment
matrix used in the Harris-Laplace detector is represented as

M(x, y, σI , σD) = σ 2
D g(σI)

⎡

⎣
I2x (x, y, σD) IxIy(x, y, σD)

IxIy(x, y, σD) I2y (x, y, σD)

⎤

⎦ (17)

where Ix and Iy are the image derivatives calculated in their respective direction using
a Gaussian kernel of scale σD. The parameter σI determines the current scale at which
the Harris corner points are detected in the Gaussian scale-space. In other words, the
derivative scale σD decides the size of gaussian kernels used to compute derivatives.
While, the integration scale σI is used to performed a weighted average of derivatives
in a neighborhood. The multi-scale Harris cornerness measure is computed using the
determinant and the trace of the adapted second moment matrix as

C(x, y, σI , σD) = det[M(x, y, σI , σD)] − α.trace2[M(x, y, σI , σD)] (18)

The value of the constant α is between 0.04 and 0.06. At each level of the rep-
resentation, the interest points are extracted by detecting the local maxima in the
8-neighborhood of a point (x, y). Then, a threshold is used to reject the maxima of
small cornerness, as they are less stable under arbitrary viewing conditions

C(x, y, σI , σD) > ThresholdHarris (19)
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In addition, the Laplacian-of-Gaussian is used to find the maxima over the scale.
Where, only the points for which the Laplacian attains maxima or its response is
above a threshold are accepted.

σ 2
I |Lxx(x, y, σI) + Lyy(x, y, σI)| > ThresholdLaplacian (20)

The Harris-Laplace approach provides a representative set of points which are
characteristic in the image and in the scale dimension. It also dramatically reduces
the number of redundant interest points compared to Multi-scale Harris. The points
are invariant to scale changes, rotation, illumination, and addition of noise.Moreover,
the interest points are highly repeatable.However, theHarris-Laplace detector returns
a much smaller number of points compared to the LoG or DoG detectors. Also, it
fails in the case of affine transformations.

3.2.4 Hessian-Laplace

Similar to Harris-Laplace, the same idea can also be applied to the Hessian-based
detector, leading to a scale invariant detector termed, Hessian-Laplace. At first, we
build an image scale-space representation using Laplacian filters or their approxima-
tions DoG filters. Then, use the determinant of the Hessian to extract scale invariant
blob-like features. Hessian-Laplace detector extracts large number of features that
cover the whole image at a slightly lower repeatability compared to its counterpart
Harris-Laplace. Furthermore, the extracted locations are more suitable for scale esti-
mation due to the similarity of the filters used in spatial and scale localization, both
based on second order Gaussian derivatives. Bay et al. [32] claimed that Hessian-
based detectors aremore stable than theHarris-based counterparts. Likewise, approx-
imatingLoGbyDoG for acceleration, theHessian determinant is approximated using
integral images technique [29] resulting in the Fast Hessian detector [32].

3.2.5 Gabor-Wavelet detector

Recently, Yussof andHitam [47] proposed amulti-scale interest points detector based
on the principle of Gabor wavelets. The Gabor wavelets are biologically motivated
convolution kernels in the shape of plane waves restricted by a Gaussian envelope
function, whose kernels are similar to the response of the two-dimensional receptive
field profiles of the mammalian simple cortical cell. The Gabor wavelets take the
form of a complex plane wave modulated by a Gaussian envelope function

ψu,v (z) = ||Ku,v ||2
σ 2

e(
||Ku ,v ||2 ||z||2

2σ2
)
[
eizKu,v − e

σ2

2

]
(21)

where Ku,v = Kveiφu, z = (x, y), u and v define the orientation and scale of the Gabor
wavelets, Kv = Kmax/f v and φu = πu/8, Kmax is the maximum frequency, and f =
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√
2 is the spacing factor between kernels in the frequency domain. The response of

an image I to a wavelet ψ is calculated as the convolution

G = I ∗ ψ (22)

The coefficients of the convolution, represent the information in a local image
region, which should be more effective than isolated pixels. The advantage of Gabor
wavelets is that they provides simultaneous optimal resolution in both space and spa-
tial frequency domains. Additionally, Gabor wavelets have the capability of enhanc-
ing low level features such as peaks, valleys and ridges. Thus, they are used to extract
points from the image at different scales by combining multi orientations of image
responses. The interest points are extracted at multiple scales with a combination
of uniformly spaced orientation. The authors proved that the extracted points using
Gabor-wavelet detector have high accuracy and adaptability to various geometric
transformations.

3.3 Affine Invariant Detectors

The feature detectors discussed so far exhibit invariance to translations, rotations and
uniform scaling; assuming that the localization and scale are not affected by an affine
transformation of the local image structures. Thus, they partially handle the challeng-
ing problem of affine invariance, keeping in mind that the scale can be different in
each direction rather than uniform scaling. Which in turn makes the scale invariant
detectors fail in the case of significant affine transformations. Therefore, building a
detector robust to perspective transformations necessitates invariance to affine trans-
formations. An affine invariant detector can be seen as a generalized version of a
scale invariant detector. Recently, some features detectors have been extended to
extract features invariant to affine transformations. For instance, Schaffalitzky and
Zisserman [48] extended the Harris-Laplace detector by affine normalization. Miko-
lajczyk and Schmid [45] introduced an approach for scale and affine invariant interest
point detection. Their algorithm simultaneously adapts location, scale and shape of
a point neighborhood to obtain affine invariant points. Where, Harris detector is
adapted to affine transformations and the affine shape of a point neighborhood is
estimated based on the second moment matrix. This is achieved by following the
iterative estimation scheme proposed by Lindberg and Gårding [49] as follows:

1. Identify initial region points using scale-invariant Harris-Laplace detector.
2. For each initial point, normalize the region to be affine invariant using affine shape

adaptation.
3. Iteratively estimate the affine region; selection of proper integration scale, differ-

entiation scale and spatially localize interest points.
4. Update the affine region using these scales and spatial localizations.
5. Repeat step 3 if the stopping criterion is not met.
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Similar to Harris-affine, the same idea can also be applied to the Hessian-based
detector, leading to an affine invariant detector termed as Hessian-affine. For a sin-
gle image, the Hessian-affine detector typically identifies more reliable regions than
the Harris-affine detector. The performance changes depending on the type of scene
being analyzed. Further, the Hessian-affine detector responds well to textured scenes
in which there are a lot of corner-like parts. However, for some structured scenes,
like buildings, the Hessian-affine detector performs very well. A thorough analy-
sis of several state-of-the-art affine detectors have been done by Mikolajczyk and
Schmid [50].

There are several other feature detectors that are not discussed in this chapter due
to space limitation. Fast Hessian or the Determinant of Hessian (DoH) [32], MSER
[51, 52], are some examples. A more detailed discussion of these detectors can be
found in [44, 45, 53].

4 Image Feature Descriptor

Once a set of interest points has been detected from an image at a location p(x, y),
scale s, andorientation θ , their content or image structure in a neighborhoodofpneeds
to be encoded in a suitable descriptor for discriminative matching and insensitive to
local image deformations. The descriptor should be aligned with θ and proportional
to the scale s. There are a large number of image feature descriptors in the literature;
the most frequently used descriptors are discussed in the following sections.

4.1 Scale Invariant Feature Transform (SIFT)

Lowe [31] presented the scale-invariant feature transform (SIFT) algorithm, where a
number of interest points are detected in the image using the Difference-of-Gaussian
(DOG) operator. The points are selected as local extrema of the DoG function. At
each interest point, a feature vector is extracted. Over a number of scales and over
a neighborhood around the point of interest, the local orientation of the image is
estimated using the local image properties to provide invariance against rotation.
Next, a descriptor is computed for each detected point, based on local image infor-
mation at the characteristic scale. The SIFT descriptor builds a histogram of gradient
orientations of sample points in a region around the keypoint, finds the highest orien-
tation value and any other values that are within 80% of the highest, and uses these
orientations as the dominant orientation of the keypoint.

The description stage of the SIFT algorithm starts by sampling the image gradient
magnitudes and orientations in a 16 × 16 region around each keypoint using its
scale to select the level of Gaussian blur for the image. Then, a set of orientation
histograms is created where each histogram contains samples from a 4×4 subregion
of the original neighborhood region and having eight orientations bins in each. A



Image Features Detection, Description and Matching 29

Fig. 8 A schematic representation of the SIFT descriptor for a 16 × 16 pixel patch and a 4 × 4
descriptor array

Gaussian weighting function with σ equal to half the region size is used to assign
weight to the magnitude of each sample point and gives higher weights to gradients
closer to the center of the region, which are less affected by positional changes. The
descriptor is then formed from a vector containing the values of all the orientation
histograms entries. Since there are 4 × 4 histograms each with 8 bins, the feature
vector has 4 × 4 × 8 = 128 elements for each keypoint. Finally, the feature vector
is normalized to unit length to gain invariance to affine changes in illumination.
However, non-linear illumination changes can occur due to camera saturation or
similar effects causing a large change in the magnitudes of some gradients. These
changes can be reduced by thresholding the values in the feature vector to amaximum
value of 0.2, and the vector is again normalized. Figure8 illustrates the schematic
representation of the SIFT algorithm;where the gradient orientations andmagnitudes
are computed at each pixel and then weighted by a Gaussian falloff (indicated by
overlaid circle). Aweighted gradient orientation histogram is then computed for each
subregion.

The standard SIFT descriptor representation is noteworthy in several respects:
the representation is carefully designed to avoid problems due to boundary effects-
smooth changes in location, orientation and scale do not cause radical changes in the
feature vector; it is fairly compact, expressing the patch of pixels using a 128 element
vector; while not explicitly invariant to affine transformations, and the representation
is surprisingly resilient to deformations such as those caused by perspective effects.
These characteristics are evidenced in excellent matching performance against com-
peting algorithms under different scales, rotations and lighting. On the other hand,
the construction of the standard SIFT feature vector is complicated and the choices
behind its specific design are not clear resulting in the common problem of SIFT its
high dimensionality, which affects the computational time for computing the descrip-
tor (significantly slow). As an extension to SIFT, Ke and Sukthankar [54] proposed
PCA-SIFT to reduce the high dimensionality of original SIFT descriptor using the
standard Principal Components Analysis (PCA) technique to the normalized gradi-
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ent image patches extracted around keypoints. It extracts a 41 × 41 patch at the given
scale and computes its image gradients in the vertical and horizontal directions and
creates a feature vector from concatenating the gradients in both directions. There-
fore, the feature vector is of length 2 × 39 × 39 = 3042 dimensions. The gradient
image vector is projected into a pre-computed feature space, resulting a feature vec-
tor of length 36 elements. The vector is then normalized to unit magnitude to reduce
the effects of illumination changes. Also, Morel and Yu [55] proved that the SIFT
is fully invariant with respect to only four parameters namely zoom, rotation and
translation out of the six parameters of the affine transform. Therefore, they intro-
duced affine-SIFT (ASIFT), which simulates all image views obtainable by varying
the camera axis orientation parameters, namely, the latitude and the longitude angles,
left over by the SIFT descriptor.

4.2 Gradient Location-Orientation Histogram (GLOH)

Gradient location-orientation histogram (GLOH) developed by Mikolajczyk and
Schmid [50] is also an extension of the SIFT descriptor. GLOH is very similar
to the SIFT descriptor, where it only replaces the Cartesian location grid used by
the SIFT with a log-polar one, and applies PCA to reduce the size of the descriptor.
GLOH uses a log-polar location grid with 3 bins in radial direction (radius is set to
6, 11, and 15) and 8 in angular direction, resulting in 17 location bins as illustrated
in Fig. 9. GLOH descriptor builds a set of histograms using the gradient orientations
in 16 bins, resulting in a feature vector of 17 × 16 = 272 elements for each interest
point. The 272-dimensional descriptor is reduced to 128 dimensional one by com-
puting the covariance matrix for PCA and the highest 128 eigenvectors are selected
for description. Based on the experimental evaluation conducted in [50], GLOH has

Fig. 9 A schematic representation of the GLOH algorithm using log-polar bins
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been reported to outperform the original SIFT descriptor and gives the best perfor-
mance, especially under illumination changes. Furthermore, it has been shown to be
more distinctive but also more expensive to compute than its counterpart SIFT.

4.3 Speeded-Up Robust Features Descriptor (SURF)

The Speeded-Up Robust Features (SURF) detector-descriptor scheme developed by
Bay et al. [32] is designed as an efficient alternative toSIFT. It ismuch faster, andmore
robust as opposed to SIFT. For the detection stage of interest points, instead of relying
on ideal Gaussian derivatives, the computation is based on simple 2D box filters;
where, it uses a scale invariant blob detector based on the determinant of Hessian
matrix for both scale selection and locations. Its basic idea is to approximate the
second order Gaussian derivatives in an efficient way with the help of integral images
using a set of box filters. The 9 × 9 box filters depicted in Fig. 10 are approximations
of a Gaussian with σ =1.2 and represent the lowest scale for computing the blob
response maps. These approximations are denoted by Dxx, Dyy, and Dxy. Thus, the
approximated determinant of Hessian can be expressed as

det(Happrox) = DxxDyy − (wDxy)
2 (23)

wherew is a relative weight for the filter response and it is used to balance the expres-
sion for theHessian’s determinant. The approximated determinant of theHessian rep-
resents the blob response in the image. These responses are stored in a blob response
map, and local maxima are detected and refined using quadratic interpolation, as
with DoG. Finally, do non-maximum suppression in a 3 × 3 × 3 neighborhood to
get steady interest points and the scale of values.

The SURF descriptor starts by constructing a square region centered around the
detected interest point, and oriented along its main orientation. The size of this
window is 20s, where s is the scale at which the interest point is detected. Then, the
interest region is further divided into smaller 4 × 4 sub-regions and for each sub-
region the Harr wavelet responses in the vertical and horizontal directions (denoted

Fig. 10 Left to right Gaussian second order derivatives in y- (Dyy), xy-direction (Dxy) and their
approximations in the same directions, respectively
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Fig. 11 Dividing the interest region into 4 × 4 sub-regions for computing the SURF descriptor

dx and dy, respectively) are computed at a 5 × 5 sampled points as shown in Fig. 11.
These responses are weighted with a Gaussian window centered at the interest point
to increase the robustness against geometric deformations and localization errors.
The wavelet responses dx and dy are summed up for each sub-region and entered in
a feature vector v, where

v = (
∑

dx,
∑

|dx|,
∑

dy,
∑

|dy|) (24)

Computing this for all the 4 × 4 sub-regions, resulting a feature descriptor of length
4 × 4 × 4 = 64 dimensions. Finally, the feature descriptor is normalized to a unit
vector in order to reduce illumination effects.

The main advantage of the SURF descriptor compared to SIFT is the processing
speed as it uses 64 dimensional feature vector to describe the local feature,while SIFT
uses 128. However, the SIFT descriptor is more suitable to describe images affected
by translation, rotation, scaling, and other illumination deformations. Though SURF
shows its potential in a wide range of computer vision applications, it also has some
shortcomings. When 2D or 3D objects are compared, it does not work if rotation is
violent or the view angle is too different. Also, the SURF is not fully affine invariant
as explained in [56].

4.4 Local Binary Pattern (LBP)

Local Binary Patterns (LBP) [57, 58] characterizes the spatial structure of a texture
and presents the characteristics of being invariant to monotonic transformations of



Image Features Detection, Description and Matching 33

the gray-levels. It encodes the ordering relationship by comparing neighboring pixels
with the center pixel, that is, it creates an order based feature for each pixel by com-
paring each pixel’s intensity value with that of its neighboring pixels. Specifically,
the neighbors whose feature responses exceed the central’s one are labeled as ‘1’
while the others are labeled as ‘0’. The co-occurrence of the comparison results is
subsequently recorded by a string of binary bits. Afterwards, weights coming from a
geometric sequence which has a common ratio of 2 are assigned to the bits according
to their indices in strings. The binary string with its weighted bits is consequently
transformed into a decimal valued index (i.e., the LBP feature response). That is,
the descriptor describes the result over the neighborhood as a binary number (binary
pattern). On its standard version, a pixel c with intensity g(c) is labeled as

S(gp − gc) =
{
1, if gp ≥ gc

0, if gp < gc
(25)

where pixels p belong to a 3 × 3 neighborhood with gray levels gp(p = 0, 1, . . . , 7).
Then, the LBP pattern of the pixel neighborhood is computed by summing the cor-
responding thresholded values S(gp − gc) weighted by a binomial factor of 2k as

LBP =
7∑

k=0

S(gp − gc).2
k (26)

After computing the labeling for each pixel of the image, a 256-bin histogram
of the resulting labels is used as a feature descriptor for the texture. An illustration
example for computing LBP of a pixel in a 3 × 3 neighborhood and an orientation
descriptor of a basic region in an image is shown in Fig. 12. Also, the LBP descriptor
is calculated in its general form as follows

LBPRN (x, y) =
N−1∑

i=0

S(ni − nc).2
i, S(x) =

{
1, x ≥ 0,

0, otherwise
(27)

where nc corresponds to the gray level of the center pixel of a local neighborhood
and ni is the gray levels of N equally spaced pixels on a circle of radius R. Since
correlation between pixels decreaseswith the distance, a lot of the texture information
can be obtained from local neighborhoods. Thus, the radius R is usually kept small.
In practice, the signs of the differences in a neighborhood are interpreted as a N-bit
binary number, resulting in 2N distinct values for the binary pattern as shown in
Fig. 13. The binary patterns are called uniform patterns, where they contain at most
two bitwise transitions from 0 to 1. For instance, “11000011” and “00001110” are
two uniform patterns, while “00100100” and “01001110” are non-uniform patterns.

Several variations of LBP have been proposed, including the center-symmetric
local binary patterns (CS-LBP), the local ternary pattern (LTP), the center-symmetric
local ternary pattern (CS-LTP) based on the CS-LBP, and orthogonal symmetric local
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Fig. 12 Computing LBP descriptor for a pixel in a 3 × 3 neighborhood [59] c© 2014 IEEE

Fig. 13 LBP and CS-LBP features for a neighborhood of 8 pixels [58] c© 2009 Elsevier

ternary pattern (OS-LTP) [60]. Unlike the LBP, the CS-LBP descriptor compares
gray-level differences of center-symmetric pairs (see Fig. 13). In fact, the LBP has the
advantage of tolerance of illumination changes and computational simplicity. Also,
the LBP and its variants achieve great success in texture description. Unfortunately,
the LBP feature is an index of discrete patterns rather than a numerical feature, thus it
is difficult to combine the LBP features with other discriminative ones in a compact
descriptor [61]. Moreover, it produces higher dimensional features and is sensitive
to Gaussian noise on flat regions.

4.5 Binary Robust Independent Elementary Features (BRIEF)

Binary robust independent elementary features (BRIEF), a low-bitrate descriptor,
is introduced for image matching with random forest and random ferns classifiers
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[62]. It belongs to the family of binary descriptors such as LBP and BRISK, which
only performs simple binary comparison test and uses Hamming distance instead
of Euclidean or Mahalanobis distance. Briefly, for building a binary descriptor, it is
only necessary to compare the intensity between two pixel positions located around
the detected interest points. This allows to obtain a representative description at very
low computational cost. Besides, matching the binary descriptors requires only the
computation of Hamming distances that can be executed very fast through XOR
primitives on modern architectures.

The BRIEF algorithm relies on a relatively small number of intensity difference
tests to represent an image patch as a binary string. More specifically, a binary
descriptor for a patch of pixels of size S × S is built by concatenating the results of
the following test

τ =
⎧
⎨

⎩

1, if I(Pj) > I(Pi),

0, otherwise,
(28)

where I(pi) denotes the (smoothed) pixel intensity value at pi, and the selection of the
location of all the pi uniquely defines a set of binary tests. The sampling points are
drawn from a zero-mean isotropic Gaussian distribution with variance equal to 1

25S2.
For increasing the robustness of the descriptor, the patch of pixels is pre-smoothed
with a Gaussian kernel with variance equal to 2 and size equal to 9 × 9 pixels. The
BRIEF descriptor has two setting parameters: the number of binary pixel pairs and
the binary threshold.

The experiments conducted by authors showed that only 256 bits, or even 128
bits, often suffice to obtain very good matching results. Thus, BRIEF is considered
to be very efficient both to compute and to store in memory. Unfortunately, BRIEF
descriptor is not robust against a rotation larger than 35◦ approximately, hence, it
does not provide rotation invariance.

4.6 Other Feature Descriptors

A large number of other descriptors have been proposed in the literature and many of
them have been proved to be effective in computer vision applications. For instance,
color-based local features are four color descriptors based on color information pro-
posed by Weijer and Schmid [63]. The Gabor representation or its variation [64,
65] has been also shown to be optimal in the sense of minimizing the joint two-
dimensional uncertainty in space and frequency. Zernike moments [66, 67] and
Steerable filters [68] are also considered for feature extraction and description.

Inspired by Weber’s Law, a dense descriptor computed for every pixel depending
on both the local intensity variation and the magnitude of the center pixel’s intensity
called Weber Local Descriptor (WLD) is proposed in [28]. The WLD descriptor
employs the advantages of SIFT in computing the histogram using the gradient and
its orientation, and those of LBP in computational efficiency and smaller support
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regions. In contrast to the LBP descriptor, WLD first computes the salient micro-
patterns (i.e., differential excitation), and then builds statistics on these salient pat-
terns along with the gradient orientation of the current point.

Two methods for extracting distinctive features from interest regions based on
measuring the similarity between visual entities from images are presented in [69].
The idea of these methods combines the powers of two well-known approaches,
the SIFT descriptor and Local Self-Similarities (LSS). Two texture features called
Local Self-Similarities (LSS, C) and Fast Local Self-Similarities (FLSS, C) based on
Cartesian location grid, are extracted, which are the modified versions of the Local
Self-Similarities feature based on Log-Polar location grid (LSS, LP). The LSS and
FLSS features are used as the local features in the SIFT algorithm. The proposed LSS
and FLSS descriptors use distribution-based histogram representation in each cell
rather than choosing the maximal correlation value in each bucket in the Log-Polar
location grid in the natural (LSS, LP) descriptor. Thus, they getmore robust geometric
transformations invariance and good photometric transformations invariance. A local
image descriptor based onHistograms of the SecondOrderGradients, namelyHSOG
is introduced in [70] for capturing the curvature related geometric properties of
the neural landscape. Dalal and Triggs [71] presented the Histogram of Oriented
Gradient (HOG) descriptor, which combines both the properties of SIFT and GLOH
descriptors. The main difference between HOG and SIFT is that the HOG descriptor
is computed on a dense grid of uniformly spaced cells with overlapping local contrast
normalization.

Following a different direction, Fan et al. [72] proposed a method for interest
region description, which pools local features based on their intensity orders in mul-
tiple support regions. Pooling by intensity orders is not only invariant to rotation and
monotonic intensity changes, but also encodes ordinal information into a descriptor.
By pooling two different kinds of local features, one based on gradients and the other
on intensities, two descriptors are obtained: the Multisupport Region Order-Based
Gradient Histogram (MROGH) and the Multisupport Region Rotation and Inten-
sity Monotonic Invariant Descriptor (MRRID). The former combines information
of intensity orders and gradient, while the latter is completely based on intensity
orders, which makes it particularly suitable to large illumination changes. Several
image features are analyzed

In spite of the fact that, a large number of image feature descriptors have been
introduced recently, several of these descriptors are exclusively designed for a spe-
cific application scenario such as object recognition, shape retrieval, or LADAR data
processing [73]. Furthermore, the authors of these descriptors evaluated their per-
formance on a limited number of benchmarking datasets collected specifically for
particular tasks. Consequently, it is very challenging for researchers to choose an
appropriate descriptor for their particular application. In this respect, some recent
studies compare the performance of several descriptors; interest region descriptors
[50], binary descriptors [74], local colour descriptors [75], and the 3D descriptors
[76, 77]. In fact, claims that describing image features is a solved problem are overly
bold and optimistic. On the other hand, claims that designing a descriptor for general
real-world scenarios is next to impossible are simply too pessimistic, given the suc-
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cess of the aforementioned descriptors in several applications. Finally, there is much
work to be done in order to realize description algorithms that can be used for general
applications. We argue for further research towards using new modalities captured
by 3D data and color information. For real time applications, a further path of future
research would be the implementation of the algorithms on parallel processing units
such as GPU.

5 Features Matching

Features matching or generally image matching, a part of many computer vision
applications such as image registration, camera calibration and object recogni-
tion, is the task of establishing correspondences between two images of the same
scene/object. A common approach to image matching consists of detecting a set of
interest points each associated with image descriptors from image data. Once the
features and their descriptors have been extracted from two or more images, the
next step is to establish some preliminary feature matches between these images as
illustrated in Fig. 14.

Without losing the generality, the problem of image matching can be formulated
as follows, suppose that p is a point detected by a detector in an image associated
with a descriptor

Φ(p) = {φk(P) | k = 1, 2, . . . , K} (29)

where, for all K , the feature vector provided by the k-th descriptor is

φk(p) = (f k
1p, f k

2p, . . . , f k
nkp) (30)

The aim is to find the best correspondence q in another image from the set of
N interest points Q = {q1, q2, . . . , qN } by comparing the feature vector φk(p) with
those of the points in the set Q. To this end, a distance measure between the two
interest points descriptors φk(p) and φk(q) can be defined as

Fig. 14 Matching image regions based on their local feature descriptors [79] c© 2011 Springer
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dk(p, q) = |φk(p) − φk(q)| (31)

Based on the distance dk , the points of Q are sorted in ascending order indepen-
dently for each descriptor creating the sets

Ψ (p, Q) = {ψk(p, Q) | k = 1, 2, . . . , k} (32)

Such that,

ψk(p, Q) =
{
(ψ1

k , ψ2
k , . . . , ψN

k ) ∈ Q | dk(p, ψ i
k) ≤ dk(p, ψ

j
k),∀i > j

}
(33)

A match between the pair of interest points (p, q) is accepted only if (i) p is
the best match for q in relation to all the other points in the first image and (ii)
q is the best match for p in relation to all the other points in the second image.
In this context, it is very important to devise an efficient algorithm to perform this
matchingprocess as quickly as possible. The nearest-neighbormatching in the feature
space of the image descriptors in Euclidean norm can be used for matching vector-
based features. However, in practice, the optimal nearest neighbor algorithm and its
parameters depend on the data set characteristics. Furthermore, to suppress matching
candidates for which the correspondence may be regarded as ambiguous, the ratio
between the distances to the nearest and the next nearest image descriptor is required
to be less than some threshold. As a special case, for matching high dimensional
features, two algorithms have been found to be the most efficient: the randomized
k-d forest and the fast library for approximate nearest neighbors (FLANN) [78].

On the other hand, these algorithms are not suitable for binary features (e.g.,
FREAK or BRISK). Binary features are compared using the Hamming distance
calculated via performing a bitwise XOR operation followed by a bit count on the
result. This involves only bit manipulation operations that can be performed quickly.
The typical solution in the case of matching large datasets is to replace the linear
search with an approximate matching algorithm that can offer speedups of several
orders of magnitude over the linear search. This is, at the cost that some of the nearest
neighbors returned are approximate neighbors, but usually close in distance to the
exact neighbors. For performing matching of binary features, other methods can be
employed such as [80–82].

Generally, the performance of matchingmethods based on interest points depends
on both the properties of the underlying interest points and the choice of associated
image descriptors [83]. Thus, detectors and descriptors appropriate for images con-
tents shall be used in applications. For instance, if an image contains bacteria cells,
the blob detector should be used rather than the corner detector. But, if the image is an
aerial view of a city, the corner detector is suitable to find man-made structures. Fur-
thermore, selecting a detector and a descriptor that addresses the image degradation
is very important. For example, if there is no scale change present, a corner detector
that does not handle scale is highly desirable; while, if image contains a higher level
of distortion, such as scale and rotation, the more computationally intensive SURF
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feature detector and descriptor is a adequate choice in that case. For greater accuracy,
it is recommended to use several detectors and descriptors at the same time. In the
area of feature matching, it must be noticed that the binary descriptors (e.g., FREAK
or BRISK) are generally faster and typically used for finding point correspondences
between images, but they are less accurate than vector-based descriptors [74]. Statis-
tically robust methods like RANSAC can be used to filter outliers in matched feature
sets while estimating the geometric transformation or fundamental matrix, which is
useful in feature matching for image registration and object recognition applications.

6 Performance Evaluation

6.1 Benchmarking Data Sets

There are a wide variety of data sets available on the Internet that can be used as a
benchmark by researchers. One popular and widely used for performance evaluation
of detectors and descriptors is the standard Oxford data set [84]. The dataset consists
of image sets with different geometric and photometric transformations (viewpoint
change, scale change, image rotation, image blur, illumination change, and JPEG
compression) and with different scene types (structured and textured scenes). In the
cases of illumination change, the light changes are introduced by varying the camera
aperture. While in the case of rotation, scale change, viewpoint change, and blur,
two different scene types are used. One scene type contains structured scenes which
are homogeneous regions with distinctive edge boundaries (e.g., graffiti, buildings),
and the other contains repeated textures of different forms. In this way, the influence
of image transformation and scene type can be analyzed separately. Each image set
contains 6 images with a gradual geometric or photometric distortion where the first
image and the remaining 5 images are compared. Sample images from the Oxford
data set are shown in Fig. 15.

6.2 Evaluation Criterion

To judge whether two image features are matched (i.e., belonging to the same fea-
ture or not), Mikolajczyk et al. [44] proposed an evaluation procedure based on the
repeatability criterion by comparing the ground truth transformation and the detected
region overlap. The repeatability can be considered as one of the most important cri-
teria used for evaluating the stability of feature detectors. It measures the ability of
a detector to extract the same feature points across images irrespective of imaging
conditions. The repeatability criterion measures how well the detector determines
corresponding scene regions. In this evaluation procedure, two regions of interest A
and B are deemed to correspond if the overlap error ε is sufficiently small as shown
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Fig. 15 Test images Graf (viewpoint change, structured scene), Wall (viewpoint change, textured
scene),Boat (scale change+ image rotation, structured scene),Bark (scale change+ image rotation,
textured scene), Bikes (image blur, structured scene), Trees (image blur, textured scene), Leuven
(illumination change, structured scene), and Ubc (JPEG compression, structured scene)

in Fig. 16. This overlap error measures how well the regions correspond under a
homography transformation H. It is defined by the ratio of the intersection and union
of the two regions, that is the error in the image area covered by the two regions,

ε = 1 − A ∩ (HT B H)

A ∪ (HT B H)
(34)

This approach counts the total number of pixels in the union and the intersection
of the two regions. Also, a match is correct if the error in the image area covered
by two corresponding regions is less than 50% of the region union, that is, ε <

0.5. The overlap error is computed numerically based on homography H and the
matrices defining the regions. Thus, to evaluate feature detectors performance, the
repeatability score for a given pair of images is computed as the ratio between the
number of region to region correspondences and the smaller number of regions in
the pair of images.

On the other hand, the performance of a region descriptor is measured by the
matching criterion, i.e., how well the descriptor represents a scene region. It is based
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Fig. 16 Illustration of overlap error for a region projected onto the corresponding region (ellipse)

on the number of correct matches and the number of false matches obtained for
the image pair. This is measured by comparing the number of corresponding regions
obtainedwith the ground truth and the number of correctlymatched regions.Matches
are the nearest neighbors in the descriptor space [50]. In this case, the two regions
of interest are matched if the Euclidean distance between their descriptors DA and
DB is below a threshold τ . The results are presented with recall versus 1-precision.
Each descriptor from the reference image is compared with each descriptor from the
transformed one and counting the number of correct matches as well as the number
of false matches.

recall = No. correct matches

Total No. correspondences
, (35)

1 − precision = No. false matches

Total No. all matches
(36)

where,No. correspondences refers to the number ofmatching regions between image
pairs. While, recall is the number of correctly matched regions with respect to the
number of corresponding regions between two images of the same scene. An ideal
descriptor gives a recall equal to 1 for any precision value. In order to obtain the
curve, the value of τ is varied. Practically, recall increases for an increasing distance
threshold τ because noise introduced by image transformations and region detec-
tion increases the distance between similar descriptors. A slowly increasing curve
indicates that the descriptor is affected by the image noise. If the obtained curves
corresponding to different descriptors are far apart or have different slopes, then the
distinctiveness and robustness of these descriptors are different for the investigated
image transformation or scene type [50].
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7 Conclusions

The objective of this chapter is to provide a straight-forward, brief introduction
for new researchers to the image feature detection and extraction research field. It
introduces the basic notations and mathematical concepts for detecting and extract-
ing image features, then describes the properties of perfect feature detectors. Vari-
ous existing algorithms for detecting interest points are discussed briefly. The most
frequently used description algorithms such as SIFT, SURF, LBP, WLD,…etc are
also discussed and their advantages/disadvantages are highlighted. Furthermore, it
explains some approaches to feature matching. Finally, the chapter discusses the
techniques used for evaluating the performance of these algorithms.
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From Algorithms to FPGA Hardware
Implementations
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Abstract Fast and accurate image feature detectors are an important challenge in
computer vision as they are the basis for high-level image processing analysis and
understanding.However, image feature detectors cannot be easily applied in real-time
embedded computing scenarios, such as autonomous robots and vehicles, mainly
due to the fact that they are time consuming and require considerable computational
resources. For embedded and low power devices, speed and memory efficiency is
of main concern, and therefore, there have been several recent attempts to improve
this performance gap through dedicated hardware implementations of feature detec-
tors. Thanks to the fine grain massive parallelism and flexibility of software-like
methodologies, reconfigurable hardware devices, such as Field Programmable Gate
Arrays (FPGAs), have become a common choice to speed up computations. In this
chapter, a review of hardware implementations of feature detectors using FPGAs
targeted to embedded computing scenarios is presented. The necessary background
and fundamentals to introduce feature detectors and their mapping to FPGA-based
hardware implementations are presented. Then we provide an analysis of some rel-
evant state-of-the-art hardware implementations, which represent current research
solutions proposed in this field. The review addresses a broad range of techniques,
methods, systems and solutions related to algorithm-to-hardware mapping of image
interest point detectors. Our goal is not only to analyze, compare and consolidate
past research work but also to appreciate their findings and discuss their applicability.
Some possible directions for future research are presented.
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1 Introduction

Many computer vision tasks rely on the extraction of low-level image features or
interest points, which usually represent a small fraction of the total number of pixels
in the image. Interest points are salient image pixels that are unique and distinc-
tive, i.e., quantitatively and qualitatively different from other pixels in the image
[1]. Such interest points must be robustly detected, meaning that they should retain
similar characteristics even after image geometrical transformations and distortions,
or illumination changes in the scene. Image features are used in several well-known
applications ranging from object recognition [2], texture classification [3], and image
mosaicing [4]. Furthermore, image feature detectors and descriptors are the basis for
the development of other applications such as image retrieval to assist visual search-
ing in large databases, virtual and augmented reality, and image watermarking or
steganography [5]. The overall performance of all those applications relies signif-
icantly on both robust and efficient image interest point detection. Local features
in every image must be detected in the first processing step of the feature-based
perception and recognition pipeline [6], which broadly involves three main steps:
(i) the detection of interest points, e.g., corners and blobs, in every frame, (ii) the
description of an interest point neighborhood patch through a feature vector, and (iii)
the match of descriptor vectors.

A wide variety of feature detectors reported in the literature exist and their out-
put vary considerably as such algorithms make different assumptions on the image
content in order to compute their response [7]. To improve reliability in the detec-
tion, a recent trend is being made to combine the power of different detectors into
a single framework to achieve better results as information of a particular detector
can be complemented with the corresponding results of its counterparts [8]. This
yields methods that use more significant resources, such as memory and compu-
tational elements, usually only available on high performance parallel computing
systems. Despite of their inherent differences, most well-known interest point detec-
tors, at low-level processing of a bottom-up approach, are computationally similar
as window-based image processing operators are required to be applied locally on
every image position or scale [9, 10]. Window-based image processing, in spite
of its inherent data parallelism and computation regularity, makes the extraction
process computationally intensive as well as high-bandwidth memory demanding,
difficult to overcome in real-time embedded applications, such as robot navigation,
self-localization, object recognition, online 3D reconstruction, and target tracking.
Recall that real-time is a context relative measure, which for image processing and
computer vision applications is commonly considered as the processing of at least
VGA resolution images at a minimum rate of 30 frames per second.

Motivated for the steady increasing demand for high-performance embedded com-
puting engines, specific custom hardware architectures have been proposed as fea-
ture detector accelerators thanks to the inherent parallelism of hardware. Yet, size,
weight, and power constraints associated with embedded computing severely limit
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the implementation choices [11, 12]. In this sense, Field Programmable Gate Array
(FPGA) devices appear to fit particularly well computer vision applications thanks to
their regular parallel computational structure and the availability of on-chip distrib-
uted memory. Furthermore, FPGA technology is always improving in logic density
and speed, which constantly increases the complexity of the models that can be
implemented on them by software-like techniques, thus facilitating the design space
exploration and fast prototyping to build a viable embedded computer vision imple-
mentation.

While alternative parallel implementation media such as multicore platforms or
Graphics ProcessingUnits (GPUs) have been used to speed up computations by using
mainly threads at programming levels [13, 14], major motivating factors for choos-
ing FPGAs are a good power-efficiency tradeoff for embedded applications, and the
further possibility to export an FPGA design to an optimized Application Specific
Integrated Circuit (ASIC). Far beyond the achievable performance improvements of
custom hardware implementations, it is also highly desirable to improve algorithms
and propose overall implementation strategies for feature detectors to be more suit-
able and amenable for embedded platforms. In this context, from a pragmatic point of
view, several other aspects should be considered for porting and deployment of image
feature detectors on embedded platforms in order to reduce the cost and guarantee
a good performance. Factors such processing time, numerical precision, memory
bandwidth and size, and power consumption—not easily discernible from sequen-
tial algorithmic representations—are particularly important for portable embedded
computing platforms. Although current embedded systems are equipped with high
performance multicore processors or portable GPUs, feature detectors still represent
a computational overhead, as the whole processing power is not fully available at any
time for just a single task. Also, recently, the computation needs of image processing
and computer vision have dramatically increased since image resolutions are higher
and there is a significant demand for processing high frame-rate videos or images
and several views derived from multiple cameras in systems with limited computa-
tional and energy resources [15]. Thus, efficient hardware implementations of image
feature detectors still remains an open challenge as hardware designers should be
actively involved in exploring design trade-offs among accuracy, performance, and
energy use.

In this chapter, a review of hardware implementations of well-known image inter-
est point detectors using FPGA devices as an implementation media is presented
and discussed. The review addresses a broad range of reported techniques, methods,
systems, and solutions related to hardware implementations of image interest point
detectors to highlight their importance for embedded computing scenarios. The rest
of this chapter is organized as follows. In Sect. 2, a background of feature detectors to
highlight the two main computational steps involved in most algorithms is presented
as well as a brief overview of FPGA technology and its potentials for efficient hard-
ware software codesign. Particularly, this section introduces an abstraction of the
computational flow found in well-known feature detectors, namely window-based
operators and operator sequencing. In Sect. 3, some relevant works related to image
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interest point detectors hardware implementation are analyzed, both for simple and
scale invariant interest point detectors. Finally, in Sect. 4 some concluding remarks
and future directions are presented.

2 Background

2.1 Interest Point Detection

Interest points are simple point features, image pixels that are salient or unique
when compared with neighboring pixels. Basically, most interest point detectors
include two concatenated processing steps or stages: (i) detection that involves a
measure of how salient each pixel is, and (ii) localization that selects stable points
determined by local non-maxima suppression. Quantitative and qualitative criteria of
both processing steps are application dependent and specific values of free parameters
are used to control the response of a detector. Given the vast diversity of feature
detectors reported in the literature and the divergence on its results, a quantitative
performance evaluation is an important procedure to assess the quality of image
feature detectors under particular conditions [1, 16, 17].

To measure how salient or interesting each pixel x in an image is, an interest point
operator [18] is defined using a mapping κ of the form:

κ(x) : R+ → R (1)

Interest point detectors differ on the nature and complexity of the operator κ that
they employ to process neighbors around a pixel x. The κ operator only computes
the interest measure for a given pixel based on local information; i.e., neighboring
pixels in an image patch. Usually, a detector refers to the complete algorithm that
extracts interest points from an input image I to produce an interest image I*.

Interest point localization is usually performed through non-maxima suppression
to eliminate highlighted pixels that are not local maxima. Normally, a thresholding
step is applied so that the response given by the initial feature enhancement can be
used to distinguish between truly features and non-features. Interest points that are
greater than a specified threshold are identified as local maxima of the interest point
measure response according to the following equation:

{(xc,yc)} = {(xc,yc)|κ(xc,yc) > κ(xi,yi),

∀(xi,yi) ∈ W(xc,yc), κ(xc,yc)>t} (2)

where {(xc,yc)} is the set of all interest points found in the image, κ(x,y)
is the interest point measure response computed at point (x,y), W(xc,yc) is a
neighborhood centered around the point (xc,yc), and t is a specified threshold.
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2.2 Overview of Well-Known Interest Point Detectors

Since this chapter is mainly focused on detectors that generate saliency responses
for each pixel in the image, this review does not consider some other feature detec-
tors proposed in the literature such as those detectors mainly oriented to highlight
regions in the images [7]. The interest point detectors considered in this work are
those based on widely used saliency measures such as gradient magnitude, Univalue
Segment Assimilating Nucleus (USAN), second moment matrix, among others. On
the other hand, scale-space interest point detectors are based in measures such as the
Hessian matrix, Laplacian of Gaussian (LoG), and Difference of Gaussian (DoG).
Such detectors are better known as blob detectors, which do not necessarily make
highly selective features, i.e., single salience pixels. In practice, a scale-space is rep-
resented as an image pyramid inwhich an image is successively filtered by a family of
smoothing kernels at increasing scale factors. Extrema detection or non-maxima sup-
pression to identify interest points is performed by searching for local extrema using
each scale in an image pyramid. Such image pyramid based scale-space representa-
tion requires a huge amount of memory and incurs heavy window-based operations
to produce an interest image.

The gradient magnitude is a measure used in several edge detection techniques
such as the Canny detector [19]. The USAN is used for edge and corner detection
in the Smallest USAN (SUSAN) detector [20], which places a circular mask over
the pixel to be tested (the nucleus). Every pixel is compared to the nucleus and the
response of SUSAN is given in terms of similar pixels to the nucleus. Harris detector
[21] is a well-known corner detector based on the eigenvalues of the second moment
matrix, which is often used for feature detection and for describing local image
structures. The FAST (Features from Accelerated Segment Test) feature detector,
proposed by Rosten and Drummond [22], is very fast to compute. In this detector,
a feature is detected at a given pixel if the intensities of at least 9 contiguous pixels
of a circular arc of 16 pixels are all below or above the intensity of the pixel by a
given threshold. However, these detectors are not invariant to scale and therefore not
very stable across scale changes; scale-space measures are used instead. The Hessian
matrix is the foundation of the detection step for scale-space SURF feature detec-
tor [23]. Difference of Gaussian is the basic detection step for SIFT features [24].
However, as exposed previously, computing window-based operators such as convo-
lutions at several image scales is computationally expensive, and in such detectors
non-maxima suppression is performed over the scale space.

The above mentioned detectors, summarized in Table1, are a representative set
of detectors widely used to identify points of interest or blobs for object recognition
and other applications that have been addressed from a hardware implementation
perspective in different embedded scenarios.
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Table 1 Summary of selected well-known image interest point detectors that have been addressed
for embedded hardware implementations

Detector Saliency measure principle Feature type Scale invariance

Canny [19] Gradient magnitude Corner No

SUSAN [20] Univalue segment assimilating nucleus Corner No

Harris [21] Second moment matrix Corner No

FAST [22] Similarity of contiguous pixels Corner No

SURF [23] Hessian matrix Blob Yes

SIFT [24] Difference of Gaussian Blob Yes

2.3 Underlying Principles of Interest Point Detectors

Low-level interest point detectors attempt to isolate image pixels that contain visu-
ally important data, such as edges, corners, or blobs. Some detectors are used as
stand-alone systems for low-level image analysis and others feed the results into
other systems performing further computational steps for higher-level image under-
standing tasks [15].Many feature-based image embedded applications have real-time
constraints and they would benefit from being able to detect features in strict time
bounds in resource constrained computing platforms.

In spite of their differences, most feature detector algorithms perform similar
data-parallel window-based computations on all pixels of the input image to create a
resultant or intermediate image. Moreover, such window-based operators, probably
with different kernel sizes and larger memory requirements, might be repeatedly
applied in more complex and time consuming algorithms to the input images through
different processing steps, or at different scales, until a final output interest image
is generated. In order to assist in the understanding of the advances on hardware
implementation of image interest point detectors, this section presents twounderlying
computational principles of feature detector algorithms that have been and should be
exploited for an efficient embedded hardware implementation [9]: (i) window-based
image operators to compute both the initial response of the detector and non-maxima
suppression, and (ii) operator sequencing as a buffering and sequencing mechanism
between intermediate window-based processing stages.

The first principle, window-based image operators, means that we have par-
allelism to be exploited by replicating computational elements at hardware level.
Managing the inherent data level parallelism and spatial locality of window-based
operators, under an appropriate computationalmodel, are essential factors for extract-
ing high performance from modern and future custom hardware architectures. The
second one, operator sequencing, means that communication optimizations are pri-
mary and essential concerns that must be addressed to exploit efficiently the potential
parallelism of hardware structures and to reduce memory bandwidth requirements.
Communication latency and overhead can dominate the critical path of the com-
putation, and interconnect throughput can be the main performance bottleneck in
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embedded implementations. Furthermore, the parallelism can be exploited effec-
tively by minimizing latency and data traffic by a careful selection of the location of
operators and data in space, i.e., the datapath construction [25].

2.3.1 Window-Based Image Processing Operators

Awindow-based operation is performedwhen awindow ofk× k pixels or neighbor-
hood is extracted from the input image and it is transformed according to a window
mask or kernel, denoted by K, based on mathematical functions to produce a result
in the output image [10]. Usually a single output data is produced by each window
operation and it is stored in the same position as the central pixel of the window.
A window-based operator is conceptually shown in Fig. 1 over an input image I to
produce an interest image Y′. An output window W is computed by operating the
extracted pixels against the kernel values. This window is then reduced to a single
output pixel at location (r,c) in the output image Y′. Figure2 shows some typical

Fig. 1 A conceptual view of a window-based operator over an input image I with a kernel K,
adapted from [9, 10]. An output window W is computed by operating the extracted pixels against
the kernel values,which are overlappedon every extracted neighborhood centered at location(r,c)
in the image. This window is then reduced to a single output pixel at location (r,c) in the output
image Y′

Fig. 2 Some typical windows used for interest point detection. Gray pixels are used in the compu-
tation of the window-based operator around the dark pixel
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windows used for interest point detection. Gray pixels are used in the computation
of the window-based operator around the dark pixel.

Window-based image operations can be formalized as follows. Let I be the M× N
input image, Y the output image, and K a k× k kernel. A window operation can be
defined according to the following equation:

Yrc = F(fin(kij,Ir+i,c+j)),∀(i, j) ∈ K,∀(r, c) ∈ I (3)

where kij represents a value or coefficient from the kernel K, Ir+i,c+j a pixel from
a k× k neighborhood NK around the (r,c) pixel in the input image, fin defines
a scalar function, and F defines the local reduction function. Normally the output
value Yrc is combined with other scalars, or compared to a threshold value by means
of a scalar function fout to produce a final response Y′

rc:

Y’rc = fout(Yrc) (4)

Common scalar functions, usually two-input operands, include relational and
arithmetic-logic operations. Typical local reduction functions used in window-based
operators are accumulation, maximum/minimum, and absolute value, which operate
on multiple input operands related to the size of the kernel. The scalar and local
reduction functions form the image algebra upon which window-based image oper-
ators rely. The scalar and local reduction functions for some of the interest point
detectors, and for the interest point localization algorithm considered in this work,
are summarized in Table2. These sets of functions are either necessary nor suffi-
cient but they do incorporate some of the most common basic operations that are
commonly used by well-known interest point detectors.

The fundamental parts of window-based operations are shown graphically in
Fig. 1. Note that three concatenated computational elements can be identified in the
processing flow of a window operation [9]. These elements are organized in a three-
piece computational component, called henceforth the threefold operator, which can
be defined in terms of the scalar functions fin and fout, and the local reduction
function F. According to Fig. 1, from left to right, the first computational element
operates two windows of scalar values, by means of a set of scalar functions fin,
to produce concurrently a set of scalar values. The operands to this computational
element are an image window or neighborhood of pixels extracted from the input

Table 2 Common scalar and local reduction functions for Harris and SUSAN algorithms, and
non-maxima supression

Algorithm fin F fout

Harris × + +,−,×
SUSAN ≤,> + <,≥,−
Localization × max >,and,=
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image at every pixel, and a kernel, denoted as NK and K, respectively. The result-
ing output set of scalar values is denoted by W. This set of intermediate values is
the input operand to the following computational element of the threefold operator,
which applies the local reduction function F onto the window W to produce the scalar
value Yrc. This output value is then operated by a scalar function fout to produce
the final output value Y’(r,c).

The sequencing order of the elements in the threefold operator shows the natural
and regular data flow in thewindow-based operator.Data can be regarded at two levels
of granularity: scalar values, and windows of scalar values that result from grouping
k× k scalar values. The threefold operator is a building block or a primitive for
describingmore elaborated forms of image processing. Communication channels and
buffering schemes amongwindow-based operatorsmust be supported so that they can
be sequenced. In the following section, the mechanism that allows communication
for a sustained data flow among threefold operators is presented.

2.3.2 Operator Sequencing

Window-based image operators such as convolution and non-maxima suppression
are key components in image processing that by themselves receive considerable
attention by the community so as to propose efficient hardware implementations
[10, 26]. However, window-based operators are rarely used isolated as they usually
work in cascade to produce an output result in more complex applications.

For instance, the computations in Harris and SUSAN detectors can be described
as a sequence of threefold operators [9]. Figure3 shows themain computational steps
to compute the Harris measure and how data flows betweenwindow-based operators.
Here we take the representative Harris corner detector as an example to illustrate the
idea of window-based operator sequencing. Harris corner detection is based on the
auto-correlation of gradients on shifting windows as it can be seen from Fig. 3. The
first order partial derivatives of the image (Step 1) are calculated and then smoothed
with a Gaussian kernel Gσ (Step 2). For each pixel in the image at position (x,y)
the Harris matrix is then computed:

H (x,y)=

[
a c
c b

]
(5)

where a, b and c are the scalar values that result from convolving a Gaussian kernel
against the first order partial derivatives of an image I over x and y directions, that
is, Ix = ∂I

∂x and Iy = ∂I
∂y . The values of the elements in the Harris matrix are cal-

culated by the following expressions: a = Gσ∗I2x,b = Gσ∗I2y,c = Gσ∗(Ix × Iy).
The equation for computing the Harris measure (Step 3) at (x,y), is given by:

κ(x,y)=(a× b− c2)− k× (a + b)2 (6)
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Fig. 3 Sequencing of window-based operators throughout the computational flow of the Harris
detector measure, adapted from [9]

and k is a constant with a typical value of 0.04. The Harris measure is then used to
decide if a corner (κ 	 0), edge (κ 
 0) or flat region (κ ≈ 0) is found.

According to Fig. 3, to compute concurrently the Harris algorithm response, con-
nection and temporal storage among threefold operators must be supported so as to
avoid the use of external memory and to allow data to be rhythmically propagated
from one stage to the other. This connection can be provided by a stream storage
component that continually holds and groups scalar values to later pump them as
full-accessible windows to exploit data parallelism. The purpose of the stream stor-
age component is two-fold: it provides amechanism for extracting neighborhoods, or
windows of pixels, from an input image, and it makes possible to sequence window
operators allowing a cascaded connection for stream processing. Yet, a coarse-grain
inter-operator pipeline can be exploited.

The conceptual representation of the storage component and its desirable func-
tionality to extract 5 × 5 neighborhoods from the input image is shown in Fig. 4. All
the pixels covered by the window are stored in registers or flip-flops and they are
all individually accessible, meanwhile remaining pixels of image rows are stored in
First-in-First-out (FIFO) structures. As an incoming pixel is shifted in, the oldest
pixel currently in the FIFO is shifted out; this mechanism allows the window to be
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Fig. 4 Graphic representation of the delay line used to extract image windows in a row-based
image scanning order (top), the sliding window effect in horizontal and vertical directions (center),
and a pipelined scheme for three window-based operator sequencing using delay lines (bottom)
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moved or slided to the next position by reading a new pixel and moving all others
one step in the FIFO [27] as conceptually shown in Fig. 4. Considering a kernel of
size of k× k values and an input image of width N, the required storage space L in
the component is L = (k− 1)× N + k. Moreover, window-based operators can
be organized in a coarse-grain pipeline for fast computation as shown Fig. 4. Even-
tually, after some latency, the resultant pixels of the last windows-based operator can
be produced successively clock by clock.

Sliding window operations and image interest point detectors are prone to bound-
ary problems. These occur when the window reaches outside of the boundaries of
the image. There two general methods to address this issue: the most straightforward
is simply omitting these values from the calculation and another used method is to
insert extra pixels around the image boundary, which is called padding [28].

2.4 Overview of FPGA Technology

Configurable hardware devices such as FPGAs are cheap and flexible semiconductor
devices that offer a good compromise between the hardware efficiency of custom
digital ASICs and the flexibility of a rather simple software-like handling for describ-
ing computations [29], allowing fast prototyping or reducing the time-to-market of a
digital system. State-of-the-art FPGAs offer high-performance, high-speed and high
capacity programmable logic that enhance design flexibility and their computational
capabilities to be applied in various and diverse application fields such as image and
signal processing [27, 29], computer arithmetics [30],mobile robotics [31], industrial
electrical control systems [32], space and aircraft embedded control systems [33],
neural and cellular processing [34, 35]. According to [36], since their introduction,
FPGAs have grown in capacity by more than a factor of 104, in performance by a
factor of 102, and cost and energy per operation have both decreased by more than
a factor of 103.

FPGAs are digital devices whose architecture is based on a matrix or regular
structure of fine grain computational blocks known as Configurable Logic Blocks
(CLBs). Figure 5 shows a conceptual view of a generic FPGA architecture and its
associated design flow. Each CLB in the regular array is able to implement com-
binational logic functions (usually four to six input functions) as Look-up-Tables
(LUTs) and provides some multiplexers and a few elementary memory components
(flip-flops or latches) to implement sequential logic [37]. The CLBs can be efficiently
connected to neighboring CLBs as well as distant ones thanks to a rich configurable
and segmented routing structure. Also, the configurable communication structure can
connect CLBs to border Input/Output Blocks (IOBs) that drive the chip input/output
pads. Memory cells control the logic blocks as well as the connections so that the
components can fulfill the required specifications by automatic tools that map the
application, specified at a high-level of abstraction, onto the chip, following the gen-
eral design flow shown in Fig. 5. FPGAs provide a fully customizable platformwhere
any kind of custom operation, either complex or simple, can be implemented, but the
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Fig. 5 Generic architecture of a current FPGA device and the main steps of the design flow to map
a high level specification into an FPGA

design of custom complex systems could be very challenging task that is still carried
out manually or in a semiautomatic way.

Recently, FPGA architectures have evolved to a higher level of abstraction and
some dedicated and specialized blocks such as embedded multiport RAM, Digital
Signal Processing (DSP) accelerators, embedded hard processor cores, such as the
PowerPC or ARM, and soft processor cores such as Nios or Microblaze are avail-
able on the same chip, transforming FPGAs into truly Systems-on-Chip (SoC). This
architectural evolution has its origin in the recent advances in VLSI technology and
boosted by the development of appropriate design tools and methods that allow cur-
rent FPGA-based implementations to be mapped from high-level specifications onto
new improvedFPGAs [32].Modern FPGA toolsets include high-level synthesis com-
pilation from C, CUDA and OpenCL to logic or to embedded microprocessors. As a
consequence, an embedded processor, intellectual property (IP), and an application
IP can now be developed and downloaded into the FPGA to construct a system-on-
a-programmable-chip (SoPC) environment, allowing users to design a SoPCmodule
by mixing hardware and software in one FPGA chip under a hardware/software
codesign approach. The modules requiring fast processing but simple and regular
computations are suitable to be implemented by dedicated hardware datapaths in the
FPGA running at hundred of MHz, and the complex algorithm parts with irregular
computations can be realized by software on the embedded processors in the FPGA.
The results of the software/hardware codesign increase the programmability and the
flexibility of the designed digital system, enhance the system performance by paral-
lel processing, and reduce the development time. The fast increase of complexity in
SoPC design has motivated researchers to seek design abstractions with better pro-
ductivity than Register Transfer Level (RTL). Electronic System-Level (ESL) design
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automation has been widely identified as the next productivity boost for the semicon-
ductor industry, where High-Level Synthesis (HLS) plays a central role, enabling the
automatic synthesis of high-level untimed specifications, to low-level cycle-accurate
RTL specifications for efficient implementation in FPGAs [38].

In spite of these architectural advances, current FPGA devices, however, are opti-
mized for regular computations and fixed point arithmetic, and they are not well
suited to floating point arithmetic. Moreover, although FPGAs have reasonably large
amounts of on-chip memory, for many applications is not enough, and it is often
required to have good interfaces to off-chip memory [39]. This is particularly impor-
tant for algorithms characterized by dependencies, suchwindow-based operator algo-
rithms, as it is not possible to ensure that all the output values of an intermediate
computational step are directly available in a subsequent step. Thus, it might happen
that some of them have to be stored for later use introducing a memory overhead.

3 Interest Point Detectors on FPGAs

Recently, significant efforts have been made directed toward the increase of the per-
formance of image processing and computer vision applications, specifically in the
acceleration of image interest point and feature detectors algorithms. The motiva-
tion for this effort oriented to FPGA-based solutions relies on the high computation
requirements needed for achieving real-time or near-real-time processing capabil-
ities. Several works have shown that FPGAs are a real opportunity for efficient
embedded hardware implementations of image feature detectors but specific prob-
lems need to be solved bymeans of architectural innovations. Modern FPGA devices
incorporate embedded resources that facilitate architecture design and optimization.
For instance, the embedded DSP blocks, multipliers and adders, enable important
speedups in window-based image operators, and small internal RAMs, both distrib-
uted and block RAM, can be used as circular buffers to cache image rows for local
processing and data reuse [14].

FPGA implementations of image interest point detectors require some algorithmic
modifications to map efficiently the algorithms onto the hardware logic. Due to the
high cost of on-chip logic required for floating point units, a constrained fixed-point
arithmetic is preferable for computations on FPGAs. A systematic methodology is
required to evaluate different precision choices in the development phase. Most of
the reported works exploits the idea of designing in a way that reflects properly
the goal of parallel execution on FPGAs by fully exploiting the advantages of the
available parallel computational resources. Although FPGAs allow a great degree of
parallelism in the implementation of such algorithms, important data dependencies
exist, and it is necessary to reduce the total amount of hardware, keeping the final
cost at a reasonable point. Scheduling of processing units, techniques for hardware
sharing, pipelining, and accuracy versus resource utilization trade-offs should be
evaluated as well [14]. On the other hand, image interest point detectors performance
depends to a some extent on high clock frequencies and high bandwidth external
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memory. FPGA devices are limited in these two aspects, and specialized memory
management units have to be developed to optimize the scheduling to the external
memory accesses in the FPGA.

This section is focused on reviewing some relevant works of the state-of-the-art
that deal with the efficient implementation of image interest point algorithms onto
FPGA devices. The review follows the traditional categorization and refer the edges,
corners, regions as the important visual features. This section has been divided into
two main subsections devoted to review the existing FPGA-based implementations
for simple interest point detectors and some scale-invariant feature detectors algo-
rithms, which due to the nature of computational complexity and the huge demanding
of memory consumption require different implementation strategies. On the other
hand, a fair comparison of performance and resources utilization between the dif-
ferent hardware implementations is not straightforward, because a different FPGA
technologies and devices are used. Hence, it is not intended to compare the imple-
mentations in terms of basic resource such as LUT, register, DSP block, and BRAM
available in modern FPGA devices, but to highlight the implementation strategies,
simplifications and the achieved overall performance results.

3.1 Simple Interest Point Detectors

Several hardware architectures have been proposed for implementing simple interest
point operators,mostly basedondelay-lines to extract imagewindows tobeprocessed
on arrays of neighboring processing elements (PEs). This well-known approach
usually supports small windows, since the memory requirement for the delay-lines,
to store the pixels to be reused, is proportional to the size for the maximum supported
window, and the image width. Most of these implementations employ a pipeline
technique in which a raster-scan image is sequentially fed into a PE array and the
window-based operations are carried out in parallel in each PE. Table3 shows a
summary of FPGA-based hardware implementations of simple image interest point
detectors, highlighting image resolution, the operating frequency, the achieved frame
rate and the target device. The FPGA resource utilization in terms of LUT, register,
DSP block, and BRAM are shown Table4; it is important to point out that the
internal component for Xilinx and Altera FPGA architectures are not completely
equivalent and some works do not report the details of the resources used in their
implementations.

Hernandez-Lopez et al. [9] propose a flexible hardware implementation approach
for computing interest point extraction from gray-level images based on two differ-
ent detectors, Harris and SUSAN, suitable for robotic applications. The FPGA-based
architecture implements two different feature detectors by abstracting the fundamen-
tal components ofwindow-based imageprocessingwhile still supporting ahigh frame
per second rate and low resource utilization in a single datapath. It provides a unified
representation for feature detection and localization on an FPGA without altering in
any way the nature of the algorithms, keeping a reliable hardware response that is
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Table 3 Summary of selected FPGA-based hardware implementation of simple image interest
point detectors

First author Detector Image Frequency Frames per Device

size (MHz) second

Hernandez-Lopez [9] SUSAN 640 × 480 50 161 XC6VLX240t

Harris 640 × 480 50 161 XC6VLX240t

Torres-Huitzil [40] SUSAN 512 × 512 60 120 XCV50

Possa [41] Canny 512 × 512 242 909 Arria V
5AGXFB3

Harris 512 × 512 232 869 Arria V
5AGXFB3

Xu [42] Canny 512 × 512 100 1386.9 XC5VSX240T

Lim [43] Harris 640 × 480 – – Altera Cyclone
IV

FAST 640 × 480 – – Altera Cyclone
IV

Kraft [44] FAST 512 × 512 130 500 Spartan-3
XC3S200-4

Hsiao [45] Harris 640 × 480 – 46 Altera Cyclone
II 2C35

Table 4 Comparison of hardware resource utilization of selected FPGA-based hardware imple-
mentation of simple image interest point detectors

First author Detector LUTs Registers DSP BRAM

Hernandez-Lopez [9] SUSAN/Harris 24189
(1%)

4347 (1%) 41 (5%) 0

Torres-Huitzil [40] SUSAN 685 (89%) 540 (71%) – 0

Possa [41] Canny 3406 (2%) 6608
(1.2%)

28 (3%) 553
Kb(3%)

Harris 8624 (6%) 17137
(3.1%)

76 (7%) 863 Kb
(5%)

Xu [42] Canny 82496
(65%)

40640
(32%)

224 (25%) 16184 Kb
(87%)

Lim [43] Harris – – – –

FAST – – – –

Kraft [44] FAST 2368
(62%)

1547
(40%)

0 216 Kb
(100%)

Hsiao [45] Harris 35000
(23%)

– 35 (83%) 430 Kb
(35%)
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not compromised by simplifications beyond the use of fixed-point arithmetic. The
design is based on parallel and configurable processing elements for window opera-
tors and a buffering strategy to support a coarse-grain pipeline scheme for operator
sequencing. When target- ed to a Virtex-6 FPGA, a throughput of 49.45 Mpixel/s
(processing rate of 161 frames per second of VGA image resolution) is achieved at
a clock frequency of 50 MHz.

Torres-Huitzil et al. [40] present an FPGA-based hardware architecture for high
speed edge and corner detection based on the SUSAN algorithm using a 7 × 7 mask
to compute theUSANarea. The architecture designwas centered on theminimization
on the number of accesses to the image memory and avoiding the use of delay-lines.
The architecture employs a novel-addressing scheme, column-based scan order of
the image pixels, that significantly reduces the memory access overhead and makes
explicit the data parallelism at a low temporal storage cost. Interestingly, internal
storage requirements to extract image windows are only dependent on the mask size
but not on the image size. The design is based on parallel modules with internal
pipeline operation in order to improve its performance. The computational core of
the architecture is organized around a configurable 7 × 7 systolic array of elemental
processing elements, which can provide throughputs over tenths of Giga Operations
per Second (GOPs). The proposed architecture was implemented on an XCV50
FPGA clocked at 60MHz to process a 512 × 512 images at rate of 120 frames per
second.

Possa et al. [41] present flexible parameterizable architectures for the Canny edge
and the Harris corner detectors. The architectures, with reduced latency and memory
requirements, contain neighborhood extractors and threshold operators that can be
parameterized at runtime to process a streamed image or sequence of images with
variable resolutions. Algorithm simplifications are proposed to reduce mathemati-
cal complexity, memory requirements, and latency without losing reliability. One
of the main computational blocks used to implement the detectors is the neighbor-
hood extractor (NE), which provides a sliding window with a fixed dimension to
the subsequent processing block. The NE design supports images with variable res-
olutions and automatically handles the image borders, keeping a reduced memory
requirement and minimizing the latency. The basic structure of the NE is a set of
cascaded line buffers connected to register arrays from where it is possible to read
the current and two or more previously stored pixels. In the Harris architecture the
partial derivatives and Gaussian filtering are computed using neighborhoods of 3 × 3
and 5 × 5, respectively. The Harris’ output values were truncated to preserve an 8
bit-width datapath but an additional Gaussian filtering step using neighborhoods of
size 5 × 5 is needed to compensate for the saturated values and to enhance local-
ization. Then, non-maxima suppression is applied on neighborhoods of size 9 × 9.
The architecture is implemented on an FPGA clocked at a frequency of 242MHz to
process a 512 × 512 image in 1.1ms.

Xu et al. [42] propose a strategy to implement the Canny algorithm at the block
level without any loss in edge detection performance compared with the original
frame-level Canny algorithm. The original Canny algorithm uses frame-level sta-
tistics to predict the high and low thresholds and as a consequence its latency is
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proportional to the frame size. In order to reduce the latency and meet real-time
requirements, authors presented a distributed Canny edge detection algorithm which
has the ability to compute edges of multiple blocks at the same time. To support
this strategy, an adaptive threshold selection method is proposed that predicts the
high and low thresholds of the entire image while only processing the pixels of an
individual local block, yielding three main benefits: (1) a significant reduction in the
latency; (2) better edge detection performance; (3) the possibility of pipelining the
Canny edge detector with other block-based image codecs. In addition to this imple-
mentation strategy, a low complexity non-uniform quantized histogram calculation
method is proposed to compute the block hysteresis thresholds. The proposed algo-
rithm is scalable and has very high detection performance. The proposed algorithm
is implemented using a 32 computing engine architecture and is synthesized on the
Xilinx Virtex-5 FPGA. The architecture takes 0.721 ms to detect edges of 512 × 512
images, when clocked at 100 MHz.

Lim et al. [43] propose FPGA implementations of two corner detectors, Harris
and FAST algorithms. The design solution for the Harris implementation is based
on the sliding window concept and internal buffers build from delay lines. The
operations involved in the Harris measure are computed using a combination of
addition, subtraction, multiplication (using hardware multipliers) and bitwise shift
operations. TheGaussian coefficientswere chosen as powers of 2, so that convolution
can be done with bitwise shift operations but at the cost of some precision. The FAST
implementation requires 6 image rows to be buffered in a FIFO structure to extract
7 × 7 window. The 16 pixels in a Bresenham circle together with the center pixel are
passed to the corner classification module. Two binary vectors are computed using
subtraction and comparators to classify pixels as one of the following: brighter, darker
or similar in intensity. In the first binary vector, brighter elements are assigned 1,
while similar pixels are assigned 0. The second binary vector assigns 1 to darker
pixels, and 0 to similar pixels. By using two binary vectors, the corner classification
is simplified to a search for 9 consecutive 1s (in either vector), and this is efficiently
done using LUTs available in FPGAs. LUTs perform a function equivalent to and
operations on every possible segment of 9 consecutive pixels. There are only 16
patterns that correspond to a corner. An or operation is applied to their outputs to
determine if such a pattern is found. The proposed designs were implemented in a
low-end Altera Cyclone IV FPGA, however performance is not reported in terms of
frames per second and the operating frequency is not clearly specified. The stream
processing architecture allows the corner classification stage to be done within a
single clock cycle. Previously, Kraft et al. [44] present a complete FPGA architecture
implementing corner detection based on the FAST algorithm. BlockRAMmemories
along with read/write address generation logic were used as FIFO delay buffers. The
FIFO depth is equal to the horizontal resolution of the image. The design is divided
intomodules: the thresholder, the contiguitymodule, the corner scoremodule and the
non-maximum suppression module. The proposed solution is capable of processing
the incoming image data with the speed of nearly 500 frames per second for a
512 × 512, 8-bit gray-scale image using a Xilinx’s Spartan 3 family, namely the
XC3S200-4, at a clock frequency of up to 130 MHz.
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Finally, Hsiao et al. [45] analyze the data flow of multilayered image process-
ing, sequenced window-based operators, to avoid waiting for the result from every
previous steps to access the memory which occurs in many applicable algorithms
such as the Harris corner detector. By combining the parallel and pipelined strategies
to eliminate unnecessary delays in the algorithm dataflow, authors propose a visual
pipeline architecture and the use of FPGA to implement efficiently their hardware
scheme. Basically, authors chain together window-based operators in order to wait
until the result from previous process has been generated. This sequencing type of
image processing algorithms is named as multilayered image processing. By ana-
lyzing the Harris algorithm, authors obtain that the multilayered image processing
architecture has four layers in which all processes can be timely triggered and paral-
leled without waiting for the end of previous processes. The multiscale Harris corner
detector was validated on a platform with a FPGA chip of Altera Cyclone II 2C35,
achieving a processing rate of 46 frames per second of 640 × 480 images.

3.2 Scale-Invariant Detectors

Scale-invariant interest point detectors detect features at different scales by using
window-based operators in multi-scale filter banks. Although conceptually simple,
the computation of window-based operators with large kernels is computational
demanding for current multicore architectures. For instance, this implies that more
than 12.41 Giga Operations per Second (GOPs) are required to support a real-time
processing rate of 1280 × 720 30 frames per second HD video with a single 15 × 15
kernel. Clearly, the computational load and the complexity of memory access grow
exponentially as the kernel dimensions increase.

In general terms, the multiscale nature of the algorithms affects architecture map-
ping to the FPGA, it requires more on-chip memory resources than usually available,
and since the image pyramid construction is inherently sequential, it must be com-
pleted before the computation of interest point measures. However, a large amount
of fine grain parallelism can be exploited within each scale since each pixel can be
processed independently. On one hand, embedded memories represent a consider-
able cost of designs, typically limitingFPGAdeployment in embedded environments.
One the other hand, the scalability is a major concern in implementations since the
architectures need major modifications when the kernel size increases.

Scale-invariant detectors receive great interest from the research community and
their computational challenges that must be faced, explains why this is still a top-
ical subject. For that reason a considerable number of recent papers on hardware
implementations can be found in the literature. Some hardware implementation
works propose implementation techniques and novel architectures for optimizing
area/performance trade-off or for offering higher design/operation flexibility, mainly
by (i) taking advantage of the separability of filters or properties of the coefficient
kernels that allows to make some simplifications, and (ii) a reformulation of the most
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computationally expensive phase of the algorithms so as to reduce the complexity of
computations by analyzing the operations and data involved [46].

A common used implementation technique employed as an alternative to speed up
computations in scale-invariant detectors is to decompose large kernels into linear
or simpler ones and then implement efficiently the simpler ones. For instance, to
reduce the computational complexity of the 2D Gaussian filtering, the separability
property of the Gaussian kernel is exploited. Under such approach, the 2D image
convolution with a Gaussian filter can be carried out by first convolving the image
with a horizontal projection of the 2D filter in the horizontal direction and then with
a vertical projection of the 2D filter in the vertical direction or vice versa as shown
in Fig. 6. As a consequence, a two-pass processing over image data is required to
perform 2D filtering.

As another example of an efficient implementation technique, which allow fast
computation of any box-type convolution filter like the one use to obtain an approxi-
mation of the Hessian matrix in SURF, is the use of integral images [47]. An integral
image is a representation proposed by Viola and Jones that allows to compute the
sum of all values within any rectangle in constant time. Figure7 shows a conceptual
view of the integral image, and mathematically can be expressed as follows:

II(x, y) =
y∑

i=0

x∑

j=0

I(i, j) (7)

The integral image can be implemented effectivelywith sequential accumulations,
RI(x, y) = RI(x − 1, y) + I(x, y) and II(x, y) = II(x, y − 1) + RI(x, y), where RI is
the sum of row, and the initial values RI(−1, y) = 0 and II(x,−1) = 0. After con-
structing an integral image, the inner sum of any rectangle can be evaluated sim-
ply with one addition and two subtractions, as shown in Fig. 7. The sum with the
highlighted box can be evaluated as II(D) + II(A) − II(B) − II(C). Although the
usage of integral image can accelerate computation on interesting point detection
and description, the computation of integral image itself may introduce a memory
overhead that is proportional to the input image size.

Fig. 6 Exploiting the separability property of the Gaussian kernel so that the 2D convolution can
be carried out by first convolving the image with horizontal projection and then with the vertical
projection of the kernel
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(a) (b)

Fig. 7 a Illustration of the integral image value at (x,y) computed as the sum of all pixels above
and to the left of such point. b The sum with the highlighted box can be evaluated in constant time
as II(D) + II(A) − II(B) − II(C)

Similarly to simple image interest point detectors, Table5 shows a summary of
FPGA-based hardware implementations of scale-invariant image interest point detec-
tors, highlighting image resolution, the operating frequency, the achieved frame rate
and the target device. As these hardware implementations aremore resource demand-
ing in terms of memory, for reference, the resource utilization in terms of LUT,
register, DSP block, and BRAM are shown Table6, However, the comparison of
resources utilization is not straightforward between the different implementations,
because different FPGA technologies are used and not all the solutions implement
the descriptor computation on custom hardware.

Jiang et al. [48] present a high-speed full FPGA-based hardware implementation
of the SIFT detector based on a parallel and pipelined architecture able of real-time
extraction of image features. Task-level parallelism and a coarse-grain pipeline struc-
ture are exploited between the main hardware blocks, and data-level parallelism and
pipelining are exploited inside each block architecture. Two identical random access

Table 5 Summary of selected FPGA-based hardware implementation of scale-invariant image
interest point detectors

First author Detector Image Frequency Frames per Device

size (MHz) second

Jiang [48] SIFT 512 × 512 50–100 152.67 Virtex-5
LX330

Wang [49] SIFT 1280 × 720 159.160 60–120 XC5VLX110T

Chang [50] SIFT 320 × 240 145.122 900 XC2VP30

Bonato [51] SIFT 320 × 240 50–100 30 EP2S60F672

Zhong [52] SIFT 320 × 256 106.57 100 XC4VSX35

Krajnik [53] SURF 1024 × 768 75 10 V5FXT70-G
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Table 6 Comparison of hardware resource utilization of selected FPGA-based hardware imple-
mentation of scale-invariant image interest point detectors

First author Device LUTs Registers DSP BRAM

Jiang [48] Virtex-5 LX330 26398
(12.73%)

10310
(4.97%)

89 (46.35%) 7.8Mb
(75.23%)

Wang [49] XC5VLX110T 17055 (25%) 11530 (17%) 52 (81%) 4.605Mb
(91%)

Chang [50] XC2VP30 6699 (24%) 5676 (20%) – 1.958Mb
(79%)

Bonato [51] EP2S60F672 43366 (90%) 19100 (37%) 64 (22%) 1.138Mb
(52%)

Zhong [52] XC4VSX35 18195 (59%) 11821 (38%) 56 (29%) 2.742Mb
(81%)

Krajnik [53] V5FXT70-G 15271 (34%) 16548
(36.9%)

40 (31.25%) 1.54Mb
(29%)

memories are adopted with pingpong operation to execute the key point detection
module and the descriptor generation module in task-level parallelism. While speed-
ing up the key point detection module of SIFT, the descriptor generation module
has become the bottleneck of the system’s performance. Authors propose an opti-
mized descriptor generation algorithm based on a novel window-dividing method
with square subregions arranged in 16 directions, and the descriptors are generated
by reordering the histogram instead of window rotation. Therefore, the main orien-
tation detection block and descriptor generation block can be computed in parallel.
The proposed system was implemented on an FPGA and the overall time to extract
SIFT features for a 512 × 512 image is 6.55 ms, and the number of feature points
can reach up to 2900.

Wang et al. [49] propose an FPGA-based embedded system architecture for SIFT
feature detection, as well as binary robust independent elementary features (BRIEF)
feature description and matching. The proposed system is able to establish accurate
correspondences between consecutive frames for 720-p (1280× 720) video through
an optimized FPGA architecture for the SIFT feature detection. The architecture
aims at reducing the utilization of FPGA resources. The SIFT key-point detection
component consists of the DoG scale space construction module and the stable key-
point detectionmodule. The DoGmodule is driven by the image stream directly from
the camera interface and it performs 2-D Gaussian filtering and image subtraction
taking advantage of the fact that Gaussian kernels are separable and symmetrical.
In this method, the 2-D convolution is performed by first convolving with an 1-D
Gaussian kernel in the horizontal direction and then convolving with another 1-D
Gaussian kernel in the vertical direction. The performance of the proposed system
was evaluated on the Xilinx XUPV5-LX110T development board. The proposed
system achieves feature detection and matching at 60 frame/s for 720-p video at
a clock frequency of around 160 MHz. It is important to mention, however, that
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architecture components might run at different clock frequencies, and as for other
cases it is not possible to report a single operating clock frequency.

Chang et al. [50] proposed a hardware architecture for the SIFT detector. In
this work, part of the algorithm was reformulated taking into account the poten-
tial for exploitation of data parallelism. To decrease the amount of multiplication-
accumulation operations and thanks to the separability property of Gaussian kernel
authors used the separable convolution. They introduced octaves processing inter-
leaving, which allowed to perform all convolution operations for a given scale in a
single processing unit. The main contribution of this architecture and the algorithm
that it implements is that as the number of octaves to be processed is increased, the
amount of occupied device area remains almost constant. This phenomenon is due to
the fact that all octaves for the same scale, no matter how many, will be processed in
the same convolution block. The proposed architecture was modeled and simulated
using Xilinx SystemGenerator 10.1 and Simulink, and it was synthesized in a Xilinx
Virtex II Pro (XC2VP30-5FF1152) at a maximum frequency of 145.122 MHz. With
the achieved throughput it is possible to process high-definition video (1080 × 1280
pixels) at a 50 frames per second (fps) rate.

Bonato et al. [51] present an FPGA-based architecture for SIFT feature detec-
tion. Their implementation uses a hardware/software co-design strategy; except the
generation of descriptors, which is executed on a NIOS-II software processor, the
remaining stages of SIFT are implemented in hardware. This architecture consists of
three hardware blocks, one for the generation of DoG scale-space, one for the calcu-
lation of the orientation and magnitude, and one for the location of key-points. This
implementation operated at 30 frame/s on 320 × 240 images. The feature description
part of SIFT was on the NIOS takes 11.7 ms per detected feature, which makes it
infeasible to perform as a full real-time SIFT implementation. As a single image may
havehundreds of features, it is still far fromsatisfactory for the real-timeperformance.
The validation platform was centered around a Stratix II FPGA and the operating
frequencies for key point detection and descriptor computation components were 50
and 100 MHz, respectively.

Zhong et al. [52] presents a low-cost embedded system based on an architecture
that integrates FPGA and DSP for SIFT on 320 × 256 images. It optimizes the
FPGA architecture for the feature detection step of SIFT to reduce the resource
utilization, and optimizes the implementation of the feature description step using
a high-performance DSP. This hardware/software system detects SIFT features for
320 × 256 images within 10ms and takes merely about 80µs per feature to form and
extract the SIFT feature descriptors. The feature detection part of their design can
achieve real-time performance. However, the feature description part of their system
was implemented in DSP, and it is not possible to guarantee real-time performance
when the number of features in an image reaches 400 or more. The architecture was
prototyped on a XC4VSX35 device at a frequency around 100 MHz.

Krajnik et al. [53] present a complete hardware and software solution of an FPGA-
based computer vision embedded module capable of carrying out SURF image fea-
tures extraction algorithm. Aside from the custom implementation of the main com-
putations of the detector, the module embeds a Linux distribution that allows to
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run programs specifically tailored for particular applications built upon SURF. The
module is based on a Virtex-5 FXT FPGA which features powerful configurable
logic and an embedded PowerPC processor. Authors describe the hardware module
as well as the custom FPGA image processing cores that implement the algorithm’s
most computationally expensive process, the interest point detection. Since the Fast-
Hessian detector is computed in hardware, the determinant calculation is done in
integer arithmetic with a limited precision for a specific number of octaves and scale
intervals and limited image size. The achieved frame rate for 1, 024 × 768 pixel
images is about 10 frames per second at a 75MHz clock frequency. The architecture
power consumption is approximately 6 W.

4 Concluding Remarks and Future Directions

The final goal of embedded computer vision, focusing on efficiency, is often real time
processing at video frame rates or dealing with large amounts of image data. In spite
of the computation power of computing platforms increases rapidly over time, image
feature detection is not the final step, but just an intermediate one in a processing chain
of the computer vision pipeline, followed by matching, tracking, object recognition,
etc. Efficiency is therefore one of the major issues that should be considered when
designing or selecting a feature detector for a given application. Motivated by the
demand for high-speed performance, difficult to overcome on sequential processors,
alternative hardware architectures have been used as feature detector accelerators so
as to speed up computations. Thanks to the fine grain massive parallelism, flexibility
of software-like methodologies and a good power-efficiency tradeoff, FPGA devices
have become a common choice for embedded computer vision applications.

In this chapter, a review of FPGA-based hardware implementations of image
interest point detectors has been presented. An overview of some of the most widely
used interest point detectors and their FPGA-based hardware implementation were
presented so as to provide a starting point to the readers interested in techniques,
methods and solutions related to algorithm-to-hardware mapping of image interest
point detectors. It is noteworthy that in spite of their algorithmic differences, there are
natural and tight connections between the computational principles of such feature
detectors. The review highlights the notion of window-based operators and oper-
ator sequencing underlying in the algorithmic nature of interest point detectors as
computational primitives that should be supported and exploited to achieve efficient
hardware implementations. By taking into account these principles and combining
fixed-point arithmetics with parallel and pipelined implementation strategies to elim-
inate unnecessary delays and overlap operations, efficient hardware architectures that
use FPGAs can be designed. Most of the reviewed research works on image interest
point detectors implementations sacrifice the accuracy by avoiding floating-point
arithmetics and/or altering the original detector algorithm so as to ease the hardware
implementation of hardware-greedy arithmetic operators, for instance division and
square root, at the cost of some precision. Internal arithmetic operations are usually
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done with adequate precision, obtained experimentally, using fixed-point number
representation and the two’s complement format.

Reviewed works show that FPGA technology is appropriate for embedded hard-
ware implementations that provide real-time performance thanks to the fine-grain
parallel processing performed in the device and the on-chip memory facilities for
internal storage that promote internal data reuse. On the other hand, the smaller
operating clock frequency, compared to high-end embedded multicore processors,
and low power requirements naturally lead FPGA devices to be a very suitable
stand-alone platform for embedded applications. Interestingly, power consumption
is rarely reported in detail in the reviewed works and much work is still needed to
properly address this issue. On the other hand, comparing speed and resource utiliza-
tion among FPGA implementations for the same algorithm reported in the literature
should be done with caution, as different devices would have different speed grades
that may enable the same design to be faster, and a fair comparison should involve a
kind of normalization in terms of the used technology. Among the reviewed detec-
tors, SUSAN and FAST detectors are competitive with the standard, more computa-
tionally expensive feature detectors and according to the presented results they are
hardware compliant as they require fewer FPGA resources without important modi-
fications or simplifications compared to the others. SIFT is one of the most memory
demanding detectors that benefits of separability of filters or properties of the ker-
nel’s coefficients that allows to make some simplifications so as to make feasible
its FPGA implementation. Furthermore, the review shows that for a full embedded
implementation of scale-invariant feature detectors, a hardware/software co-design
is preferable. The computational-intensive detection principle is usually mapped into
an specialized parallel hardware architecture, meanwhile the more irregular compu-
tations involved in the descriptor are implemented on optimized software running
on embedded processors, taking advantage of the system-on-a-programmable-chip
(SoPC) platform offered by current FPGA devices.

Despite the observed encouraging results of using FPGA technology to imple-
ment image interest point detectors, further work is still needed to improve the
hardware accelerators portability across FPGA-based platforms in more realistic
proof-of-concept applications with shorter design cycles. Overall, further improve-
ments in hardware implementations depend on the ability to automatically extract
the parallelism from high level specifications and as a consequence it might become
a limitation to explore faster the design space. Recent trends suggest that the integra-
tion of both software and hardware functionalities in a single chip using an embed-
ded processor, Intellectual Property (IP) cores, and some customized peripherals,
providing a so-called system-on-programmable-chip (SoPC) solution. Might boost
FPGA-based embedded computing applications. On the other hand, the FPGA’s
performance for feature detectors can be increased by utilizing Double Data Rate
(DDR)-based externalmemorybanks or newermemory technology, as currentlymost
prototyping platforms contain only one such memory bank. Moreover such memory
banks should math FPGA embedded memory size and organization (memory block
size(s), memory banking, and spacing between memory banks) that fits the needs of
the application. This is particularly important for achieving high performance for the
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multiscale interest point detectors due to a large extent to their iterative nature and
the related memory management challenges.

It is clear that porting algorithms that have been tailored to CPU-like architectures
to an FPGA is a difficult task, and themodifications and simplifications undertaken in
this endeavor might even affect the robustness of the original algorithm. In general,
this approach might be acceptable for some specific applications, but it is neither
suitable as a general-purpose standalone module, nor acceptable for many other
vision applications. Thus, real-time embedded hardware designs that may be used as
a stand-alone multi-detector module that can be easily adapted to diverse computer
vision applications are highly desirable and they should be further explored in the
future so as to define truly generic IP modules that can be customized and ported to
meet different user environment and system requirements. Far beyond the achievable
performance improvements of custom hardware implementations, it is also highly
desirable to improve algorithms and propose overall implementation strategies for
feature detectors to be more suitable and amenable for embedded platforms since
factors such processing time, numerical precision, memory bandwidth and size, and
power consumption are not easily discernible from sequential algorithmic represen-
tations.
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Image Features Extraction, Selection
and Fusion for Computer Vision

Anca Apatean, Alexandrina Rogozan and Abdelaziz Bensrhair

Abstract This chapter addressesmany problems: different types of sensors, systems
and methods from the literature are briefly revised, in order to give a recipe for
designing intelligent vehicle systems based on computer vision. Many computer
vision or related problems are addressed, like segmentation, features extraction and
selection, fusion and classification. Existing solutions are investigated and three
different data-bases are presented to perform typical experiments. Features extraction
is aimed for finding pertinent features to encode information about possible obstacles
from the road. Feature selection schemes are further used to compact the feature
vector in order to decrease the computational time. Finally, several approaches to
fuse visible and infrared images are used to increase the accuracy of the monomodal
systems.

Keywords Obstacle detection · Features extraction and selection · Fusion ·
Classification · Visible and infrared images · Intelligent vehicles

1 Introduction

Computer Vision (CV) applications aim at finding correspondence between two
images of the same scene or the same object, 3D reconstruction, image registra-
tion, camera calibration, object recognition, and image retrieval, just to mention
few among them. In recent years, the continuous progress in image processing and
CV algorithms has attracted more and more attention in research areas approach-
ing object detection, recognition and tracking. Autonomous intelligent vehicles,
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intelligent robots, personal assistants are just few of the applications where such
operations converge.Advanced techniques in features extraction, selection and fusion
have been successfully applied and extended therein.

Nowadays, machine learning have gained popularity in various applications, with
a significant contribution to equipping robots and vehicles with seeing capability, i.e.
vision by CV, but also with communication skills [1, 2]. Real-time robust systems
have been built thanks to the advancement of relevant CV techniques, some used
in combination with similar processing in speech or language domain, for voice
commands detection and interpretation among others.

Robots represent the ultimate challenge for real-time systems engineers because
they combine image, sound and text processing, artificial intelligence, and electro-
mechanical mechanisms, all collaborating. Nao [1] and Asimo [2] are really great
robots, able to detect persons and their faces and recognize thus humans identity;
they ask questions and make decisions based on answers; they move, play a ball,
jump or protect themselves at falling. Asimo can even act like a host, by serving you
the preferred drink. Advances in robot technology will further change how common
people interact with robots. Even today’s robots are generally perceived to perform
repetitive tasks (except the ones like Nao or Asimo), human-robot interaction will
soon become a necessity. Tomorrow visionary assume that sensors, communications
and other operational technologies will work together with information technologies,
to create intelligent industrial products.

Evenmore, a large number of small, communicating real-time computers found in
most smartphones, appliances, wearables, etc. promise to transform the way human
beings interact with their environment. Moreover, people are talking more and more
about the large adoption (at an industrial level) of the imminent technology called
Internet of Things (IoT) and a lot of sensation has been made around this subject,
assuming it will revolutionize the world just as Industry revolution and then Internet
revolution did [3–6]. This trend will encourage the development of low-cost solu-
tions involving more or less knowledge of machine learning, data or text mining
algorithms. These low-cost platforms for real-time intelligent applications generally
integrate multiple sensors and are able to adapt their functioning automatically to the
user/system behavior/functioning. Such systems have to continuously monitor not
only the surroundings, but also the user/system state and behavior. This is generally
accomplishedwith different types of sensors, vision systems,microphones and so on,
all needed to improve or generalize the IoT functionality. One such possible device
could help the driver, e.g. to detect that she/he closed the eyes, so fall asleep or it
has been too long without looking at the windshield or detect a users emotion and
predict her/his future affect state (healthy issues), among others.

The imminent IoTpromise aworld inwhich intelligentmachines not only connect,
but cooperate with each other. Thus, a plenty of applications to improve health and
well-being of children and elderly will be available and this will be obtained with a
significant contribution of CV techniques.

In the Intelligent Vehicle (IV) field, the majority of research projects concentrated
at the exterior of the vehicle as more surveys prove it [7–16]; thus, the cameras were
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mostly oriented to the road. Still, recently, there are also research teams having the
main interest to the interior of the car, proposing solutions to monitor the driver
[17–19]. Smart environments and monitoring systems will be available by the large
adoption of the IoT technologies, but what about if a generic activity monitoring sys-
tem or simpler, a robot, will be able to completely observe and understand the driver
affect state? How far is then an intelligent autonomous car in the industrial sector,
to accomplish constraints such as real time functioning, low cost implementation,
robustness in all possible driving situations, or even more?

This chapter provides a background overview, addressing many CV problems:
after a short introduction in Sect. 1 in the IV field, different types of sensors, systems
and methods from the literature are surveyed in Sect. 2. Next, the proposed recipe for
designing intelligent systems for IV is presented in Sect. 3. The CV related aspects,
like features extraction and selection, fusion and classification in the frame of applica-
tions from IV field are approached in Sect. 4. After reviewingmore possible solutions
from the literature for these problems, our proposed solutions is provide as a guide
to obtain possible systems. To highlight each module from the proposed solution,
three databases are briefly presented and some typical experiments are described.

2 State of the Art in Intelligent Vehicles

2.1 Autonomous Intelligent Vehicles

The interest for the IV field has been increased during the last years to assure the
safety of both the driver and the other traffic participants. Leading car developers
such asDaimler Chrysler, Volkswagen, BMW,Honda, Renault, Valeo, among others,
have recorded significant contributions regarding this field. The developed consistent
research has shown that IVs could senses the environment by using active sensors,
like radars or laser scanners, combined with passive sensors, like VISible (VIS) or
InfraRed (IR) spectrum cameras. Systems combining multiple types of active and
passive sensors have been shown efficient for both obstacle detection and automatic
navigation during the DARPA Grand Challenge 2007, also known as the “Urban
Challenge” [20]. In the frame of VIAC, i.e. VisLab Intercontinental Autonomous
Challenge [21], four electric and driverless vehicles navigated a 13,000km test from
Parma, Italy, to Shanghai, China. The VIAC vehicles were equipped with 4 lidars
and 7 digital cameras, providing frontal, lateral and rear sensing. The prototype
BRAiVE [22] is another VisLab contribution; being equipped with 10 cameras, 5
laser scanners, 1 radar, 1 GPS and inertial measurement unit and one emergency stop
system, it is able to detect obstacles, follow an in-front vehicle, warn for possible
collisions, recognize traffic signs, detect parking slot among others. Another relevant
example is the Google driverless car which considers the environmental data taken
with roof-mounted lidar, uses machine-vision techniques to identify road geometry
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and obstacles, and controls the cars throttle, brakes and steeringmechanism, all being
performed in real-time [23].

Honda has implemented the first intelligent night vision system [24] using two far
infrared cameras, installed in the front bumper of the vehicle. It provides visual and
audio cautions (when it detects pedestrians in or approaching the vehicles path) for
the driver in order to help during the night driving. Another recent innovation to help
driver see better at night and in the most diverse weather conditions, is the BMW
Night Vision system [25]. With its long range detection capability (up to 300m for
a human being), their system assist the drivers, by providing more time to react and
avoid accidents. Similar systems equip today also some vehicles fromMercedes and
Audi.

The autonomous systems previously mentioned exist but they are prototypes,
generally used for research purposes and their implementation costs make them
unapproachable for a series vehicle. Such series vehicles, by a large adoption, could
really decrease to zero the number of accidents from the traffic road areas. Still, night
vision systems implemented on-board of more vehicles today proves their support,
attracting a larger segment of drivers everyday.Evenwith all this commercial success,
existing on-board systems are far from an autonomous series intelligent vehicle.

2.2 The More, The Better

Is more, better? Not even in real life scenarios this is always valid, so the same is
when equipping a vehicle on the road. Each new sensor add its influence to the system
cost, possible interference problems, computational workload, difficulties in inter-
preting and storing the raw data, etc. By now, (semi)autonomous vehicles have been
developed, and they could also demonstrate intelligence, by seeing, understanding
or even interpreting the scene and taking decisions on how to react on this (i.e. detect
the road, the obstacles, even recognize the obstacle type, on daytime or night-time).
But these systems, generally either use some mixture of expensive sensors, or the
processing of data has been conducted on a powerful expensive workstation server-
like (ultra-high speed processing, multiple cores, large storage, etc.) or both. These
system setups could not be applicable to industrial sector due to the cost, space and
weight constraints.

To be a solution for equipping a series vehicle, the system should have sensors
with low cost, no interference issues, function in real time and prove robustness in
diverse atmospheric and illumination situations. Thus, to answer the question from
the beginning of the subsection, not every time more means better. In the frame of
IV systems, more and diverse sensors could add their benefits to improve the system
functionality, but the implementation cost generally constrict this to only a few, a
single type or even a single one.
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2.3 Sensors and Systems in Intelligent Vehicles

Many systems developed in the IV field and employing one or multiple sensors
are reviewed in literature [9, 10]. In [26], common sensors used in the IV field are
examined: some sensorsmayhavemany advantages, but also some strong limitations,
which will make them to be not-so-properly for the implementation of a general
Obstacle Detection and Recognition (ODR) system. In such an ODR system, the
hypothesis generation phase is first occurring, when Obstacle Detection (OD) or
ROI (Region Of Interest) estimation is accomplished. Obstacle Recognition (OR)
or hypothesis verification component follows, which would, first, help the detection
by discarding the false alarms, and second, it would assist the system in making
the appropriate decision in different situations according to the obstacle type. An
unsolved issue of the existing ODR systems is their limited ability to ensure a precise
and robust OR in real conditions.

What type of sensor is best? Generally, the sensors used in the IV field can be
classified according to different criteria: first, as concerns the perception about the
environment, i.e. the type of the measured information, they are proprioceptive and
exteroceptive; second, they can be classified about the spectrum position of the radi-
ation they use to function and third, they can be classified as active or passive con-
cerning the presence or absence of a radiation required in their functioning. Further
details and information can be found in [26].

One sensor which could provide enough information to detect obstacles
(even those occluded) in any illumination or weather situation, to recognize them
and to identify their position in the scene does not exist (at least today, as the authors
surveyed). In the IV domain there is no such a perfect sensor to handle all these
concerned tasks, but there are systems employing one or many different sensors in
order to perform obstacles detection, recognition or tracking or some combination of
them. Thus, there is not a single best sensor which could equip a vehicle to provide
autonomous driving functionality, but generally a combination of not-so-expensive,
complementary sensors is aimed.

Active or passive sensors?Many systems use radars, due to their strongest advan-
tage: insensitivity to atmospheric changes, like rain, snow or fog. Being an optical
sensor, laser scanner is affected by critical weather conditions (fog, snow), its func-
tioning and detection range being limited. Active sensors, like radars and laser scan-
ners, are mainly used for OD due to their capability to provide distance to possible
obstacles, and generally not adopted for OR. On the other side, passive sensors, like
cameras, provide richer frontal and lateral information of the road scene allowing
thus an efficient OR. Moreover, while IR cameras may be used for OD by objects
temperature, the OD task with VIS cameras could be implemented by stereo-vision
(allowing for depth information), and/or by an optical flowprocess (providingmotion
information). Although the image processing could be computationally expensive,
fast algorithms and electronics are proposed all the time, allowing for real time
implementation of such CV-based systems. In this way, the implementation cost of
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a system comprising only passive sensors could be a proper solution for equipping
a series vehicle.

To conclude, the sensors proposed for the implementation of an ODR system,
as motivated in [27], are only passive ones: their counterparts, the active sensors,
are extremely invasive, susceptible of interference problems in cluttered traffic and
present high acquisition price.

A possible CV-based system could use a VIS stereo-vision sub-ensemble, aug-
mented with a monocular IR camera, in order to benefit from the complementary
characteristics of both types of passive sensors, as proposed in [27]. In the frame of
INSA laboratory, a VIS stereo-vision system was developed for OD of vehicles [28]
and pedestrians [29] and we aimed to continue this work by enhancing the system
with an OR component based on VIS—IR weighted fusion. The passive sensors
basic functioning is generally improved by fusion of multiple types of sensors or
different sensors of the same type; this can be accomplished at many possible levels:
sensors, raw-data, features, SVM-kernels, scores, classifiers, decisions, as presented
in what follows.

In the CV domain, images are mainly processed for detection, recognition or
tracking. Moreover, the algorithmic components of an ODR system implemented
on a generic platform can be decomposed into acquisition, preprocessing, detection
or segmentation, classification and tracking, although specific system implementa-
tions might not have one or more of these components. These steps could even be
generalized to many application domains [30].

The hardware implementation of these operations (from theCVdomain) generally
aim an FPGA (Xilinx Virtex) platform, which cost could be relatively low for a series
vehicle. For example, in [31] the optimized Speeded-Up Robust Feature (SURF)
algorithm, which is specific to CV applications, was implemented on such a VLSI
architecture (supporting more tasks to be realized in parallel).

3 A Possible ODR System

Similarly to the way humans use their senses to relate to the world around them,
a computer system has to interpret the environmental data, and this is generally
accomplished by machine perception task. This also imply CV, with methods for
acquiring, processing, analyzing, and understanding images and, in general, process-
ing high-dimensional data from the real world. This will further produce numerical
or symbolic information, e.g., in the form of decisions. Computer vision has many
applications already in use today in the IV field: road detection and following, scene
understanding, pedestrian or vehicle detection, obstacles recognition, tracking, night
vision, geographical modeling, etc.

To address such applications, generally Machine Learning (ML) is used to build
computer systems that learn fromexperience or data. These systems require a learning
process that specify how they should respond (as a result of experiences or examples
they have been exposed to) to new examples, unknown.
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Almost all categorization systems developed by now in the IV field employ an OD
step followed by an OR module. Very often there is also a third module in which the
recognized obstacles are tracked in their trajectory until they are no longer viewed
in the scene. The OR module is supposed to support the OD module (which mostly
is based on stereo-vision) by its ability to deal with the great variability of obsta-
cles (mostly pedestrians and vehicles, but also cyclists or other type of obstacles),
appearances and occlusions in any illumination and weather conditions. Besides, the
variety of obstacles appearances (different type, shape, size, viewing angle, texture
and color, they could be occluded or not, etc.) combined with the outdoor environ-
ment, and the moving vehicle constraints make the ODR a challenging task. Also
a problematic task in the IV domain is the development of an intelligent automatic
pilot (for an autonomous vehicle) which could therefore entirely control the vehicle
like a human (or even in an improved way). Such a system has not only to recognize
the road trajectory and to detect any possible obstacle which may appear near or on
the road, but also to identify/recognize the obstacle type, to estimate its behavior
and propose certain actions. In addition, it could also monitor the driver state and in
critical situations, take over the vehicle control. This is generally accomplished by
ML mechanisms, and two directions for such systems addressing the ODR task can
be distinguished:

(a) most of them aim the detection of a particular type of obstacle (pedestrian or
vehicle most often) and perform thus a binary classification (it is or it is not the
obstacle they meant), while

(b) very few systems consider as obstacle anything obstructing the host vehicle
path and the detected obstacle enter in the recognition module where its type is
predicted by multiclass classification.

3.1 Main Processing

In a real system, when classification is implied, object detection or ROI estima-
tion/identification is generally followed or related by an object recognition process;
this latter can also be divided into two tasks: object verification and object identi-
fication. The former seeks to verify a new object against a stated object model (it
implies a one-to-one comparison) and it is often used to verify if the object is the
one a hypothesis claims it is—for example the ROI provided by an OD module for
a specific type of object (case a). In the latter, i.e. object identification, the task is
more general: it has to discover the object type, category or class. The sample of the
current object is compared with the existing models of the objects in the database
(one-to-many comparison). Using decision logic (generally with a threshold value),
a model matching the current object is chosen (case b). Assuming that the database
contains a sort of model for all the objects being identified, defines a closed set of
objects, but practically it is hard to have precisemodels for all objects thatmay appear
in a real scenario. In the IV domain, generally there are two possible situations:
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• to use an open set of objects, this corresponding to unsupervised methods, where
the identification models are trained using data from only the object it represents;
generally, objects present low intraclass variability, e.g. the case of recognizing
pedestrians—each possible pose represent a class, or

• to use an approximation of closed set, i.e. some representative models are used
to construct the database and this is the case of supervised methods; generally,
objects present high intraclass variability, e.g. recognizing all types of possible
pedestrians as a single class.

The most frequent case is to recognize objects by their specific appearance
(e.g. recognizing pedestrians from the frontal/lateral view) or behavior (e.g. recog-
nizing pedestrians by the human walk) and these are supervised methods because
they imply training and the availability of data.

The criteria used in the ODR task depends on the definition of what the obstacle
is. In some systems, the detection of obstacles is limited to the localization of spe-
cific shapes corresponding to obstacles (like vehicles, pedestrians, cyclists), which
is based on a search for specific patterns, such as shape, symmetry, edges, pedes-
trians head or vehicles lights. This search for patterns common or not to multiple
obstacle classes generally lead to the determination of a Bounding Box (BB). These
approaches are generally based on some knowledge about the obstacle type, and they
will be referred in what follows as knowledge-based. A more general definition of an
obstacle, which leads tomore complex algorithmic solutions, identifies as an obstacle
any object that obstructs the path the host vehicle is driving on. In this case, instead of
recognizing specific patterns, the OD task is reduced to identifying the area in which
the vehicle can safelymove and anything rising out significantly from the road surface
would be considered as obstacle. Due to the general applicability of this definition,
the problem is using more complex techniques, like those based on the processing
of two or more images, which are: the analysis of optical flow field or the processing
of nonmonocular (i.e. stereo) images. The optical flow-based technique requires the
analysis of a sequence of two ormore images: a two-dimensional vector is computed,
encoding the horizontal and vertical components of the velocity of each pixel. The
obtained motion information can be used to compute ego-motion and moving obsta-
cles can be detected and/or tracked in the scene by analyzing the difference between
the expected and real velocity fields and by removing background changes. On the
other hand, the processing of stereo images requires identifying correspondences
between pixels in a pair of left and right images. Stereo-based approach is generally
more robust than the optical flow-based one, especially when both host-vehicle and
obstacles have small or null speeds.

To conclude, knowledge-based methods employ a priori knowledge about the
obstacle to hypothesize its locations in the image. Motion-based methods use opti-
cal flow techniques, while stereo-based approaches generally use an v-disparity
method or Inverse Perspective Mapping (IPM) to estimate the locations of obsta-
cles in images.
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3.2 CV-Based Systems in Intelligent Vehicles

The most developed systems are specific for one kind of object detection, either
pedestrian or vehicle. These dedicated systems are looking for obstacles in the scenes
using either an active sensor, like radar or laser scanner which will provide the
distance to the respective object, or a passive one like cameras. Besides, employing
active technologies, which are efficient and robust, but too expensive, is not the
frequent case when a series vehicle is aimed. In this chapter, the use of only passive
sensors (i.e. cameras) which are quite cheap, but their functioning still possible to
be improved (as they struggle in the presence of occlusions and in difficult lighting
conditions) are considered.

When the OD task is limited to the localization of specific patterns corresponding
to obstacles, e.g. in the knowledge-based approaches, the processing can be based on
the analysis of a single still image, in which relevant features are searched for. The
other systems, inwhich amore general definition of obstacle is exploited and all types
of obstacles are searched at a time, the OD assignment is reduced to identifying the
area in which the vehicle should safely move. Generally, in the frame of these type of
systems, the road detection is performed by a monocular camera, but the localization
of possible obstacles on the vehicle path is realized employing two cameras instead
of a single one (for stereo approaches) or by using a video sequence of images
(for motion-based approaches).

3.3 Background Overview

3.3.1 The Obstacle Detection Task

The majority of developed systems have used in the OD step one of the following
three methods: (1) knowledge-based, (2) motion based, or (3) stereo-based.

Motion-based methods detect objects based on their relative motion, extracted
from the optical flow information. Unfortunately they are quite slow, since they need
to analyze a sequence of frames. These methods have been shownmore appropriated
for fixed cameras, employed for parking surveillance, than mounted on a vehicle
[32, 33].

Being designed according to the model of human perception of objects in space,
stereo-vision methods [34] are able to detect all types of objects, even the occluded,
static or moving ones, based on their distance with respect to the system. These
methods are mainly based on v-disparity and IPM algorithms. Generally, stereo-
vision is used for OD task, but there are systems employing it also to provide the
size/scale of the potentially objects for OR.

There are few directions for searching possible obstacles in the scenes, in the
case of knowledge-based methods: (1) to use sliding windows encoding an obstacle
specific shape of different sizes over the entire image or on some areas from the
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image (determined from perspective constraints), or (2) to look for areas presenting
symmetries or textures specific to possible obstacles, (3) to try to detect specific parts
of the proposed obstacles, e.g. pedestrians legs or head, the wheels, headlights or
the shadow produced by a vehicle. The simplest knowledge-based technique is the
one of sliding window, where windows at different scales and locations are shifted
over the image. This method is used nowadays with Haar, Haar-like and/or HOG
[35] features. Even the process is slow, there are speed-up variants with cascade
classifiers [36]. Template matching with the obstacles contour is another possible
approach, the templates generally being the head, legs or other parts of human body
shape; headlamps or tires of vehicle. The information is generally provided as an
image or as a set of features extracted from that obstacle samples. These methods are
application-specific, and could employ some constraints, like aspect-ratio, geometry
or even scene appearance area, which limit their generalization to multiple obstacles
detection [37]. The methods employing symmetry or edges detection allow efficient
OD only if the objects do not present strong occlusions (they should match an heuris-
tic obstaclemodel). Amajor drawback is that they use an inflexiblemodel, fixed by an
important number of parameters that could affect the system robustness [38]. Meth-
ods performing the segmentation of an obstacle in sub-regions are quite promising,
since they not only simplify the representation, but they can also be used to detect
partially occluded objects [39, 40]. Another promising OD method is based on local
features matching and recognition using SIFT (Scale Invariant Feature Transform)
to detect and describe local features in images [41], and SURF (Speed Up Robust
Features) based on sums of Haar wavelet applied on integral images. In [42] pedes-
trian hypotheses are generated using a Hierarchical Codebook which is a compact
representation of local appearance of pedestrian heads in FIR (Far IR) images. Then,
BBs are constructed and overlapping ones are merged together by clustering.

3.3.2 The Obstacle Recognition Task

For the OR task, different features extractors together with classification algorithms
have been tested during the last years, in order to solve the obstacle categorization
problems. In [43] motion and appearance information (sum of pixels in various rec-
tangles subtracted from each other similar with Haar wavelets), were classified with
an AdaBoost cascade approach. Simple detectors (with a smaller number of fea-
tures) were placed earlier in the cascade, whereas complex detectors were activated
later. In [35] HOG features are processed by an SVM to detect pedestrians. In [44]
multiple cues (i.e. hierarchical shape matching and texture information) were com-
bined within a neural network. Another combination of features, i.e. HOG and Haar
wavelets proves efficient within an AdaBoost classifier [45], as it has been shown
as the top performer on Caltech database for pedestrian detection. Still, the existing
CV-based methods are generally difficult to compare because they are rarely tested
on a common data set and with common experimental setup. Just recently some
authors compared the results previously obtained by them or by other research teams
on the same database [46–48].
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Very few systems treat the problem of VIS—IR fusion. Among them, [49] have
used a four-camera system (stereo color visible and stereo infrared) for pedestrian
detection, based on v-disparity for the OD task and on an SVM classification of HOG
features for the OR. A local appearance model based on SURF features, combined
with an SVM classifier, within a multimodal VIS—IR fusion framework is used in
[42] to recognize both pedestrians and vehicles.

3.4 The Proposed ODR Module

The main component of an ODR system is the ODmodule, but because it has not yet
reach a robust and acceptable accuracywhenworking alone in an autonomous system,
almost all existing systems from the IV literature provide a second component, theOR
module. The main purpose of the recognition module is to identify the type or class
of the detected obstacle, and to eliminate the false alarms, i.e. to reject them. The OD
with visible spectrum (VIS) cameras could be improved by stereo-vision, allowing for
depth information, and/or by an optical flow process providing motion information.
A system based on stereo-vision, augmented with a monocular IR camera, seems in
[27] the best solution for an ODR task. The system uses both VIS and IR to benefit
from the complementary characteristics of both types of passive sensors and thus
to assure a proper functioning in more and diverse situations. The architecture of
the system presented in [27], and given in Fig. 1 is based on three passive cameras:
a stereo-vision pair for OD (using the stereo matching method developed at INSA
laboratory), and an IR camera for OR to remove the false alarms. The BBs generated
by the OD component, as potential obstacles, have first to be projected on the IR
image and then they are given, together with the BB in VIS spectrum, as inputs to
the OR component.

The system has to discriminate between usual road obstacles like pedestrians,
vehicles and cyclists, but also to distinguish these types of obstacles from other
objects belonging to the background, as traffic signs, barriers, or regions of the
image scene without any particular significance. Moreover, the results from the OD

Fig. 1 The proposed obstacle detection and recognition system
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Fig. 2 A possible
segmentation in visible
domain

step are not trivial: it could provide several BBs for the same obstacle, the BBs could
be centered or not on the obstacle, or they even could overlap each other, providing
thus much more situations which have to be considered.

3.4.1 The Proposed Obstacle Detection Module

On theVIS domain, stereo configuration is required because the segmentation is hard
or even impossible usingmonocular VIS spectrum vision in the context of a cluttered
background and real time functioning. The detection part on VIS was already treated
in the frame of INSA laboratory, e.g. like in [28, 29] and it is still a work in progress.
Like other systems from the IV literature, the OD module has registered some false
alarms: possible examples of detected BBs, including unwanted false alarms, are
presented in Fig. 2.

On the IR domain, due to the pixels emphasis in intensity corresponding to hot
areas, even a simple threshold-based segmentation will provide good results, as it
can be noticed in Fig. 3, where the results are after applying a simple binarization
operation. The method has been developed in a first attempt and it did not received
too much attention due to the small efforts in its development. Still, being based
on a simple intensity threshold-based segmentation in IR domain, it is a simple and
rapid way of segmenting obstacles in normal situations of day or night. It has to
be mentioned that, like other detection systems from the IV literature, the proposed
OD module will select the objects being very closed to each other as a single one,
i.e. as belonging to the same BB. Thus, it could be considered that those multiple
obstacles belong to the same class, or they are parts of the same obstacle. One
possible inconvenient is that in the evaluation stage, if the coordinates of themanually
annotated BB does not fit those provided by the OD module, the OR module could
be penalized; but this is more about the experimental setup.
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Fig. 3 A simple intensity threshold-based segmentation in infrared domain

The OD module from VIS could be separable from the OD module from IR,
and thus independent and parallel detection tasks could be accomplished. Diverse
illumination andweather situationswill have to be studied and themodules calibrated
on some specific situations; different tests for more possible scenarios are needed due
to the adaptation to illumination and weather, e.g. hot day-normal day in summer,
day-night, summer-winter, etc.

The OD module functioning would be an intelligent one, due to the fact that
the system should recognize different possible setup scenarios and act according to
that specific illumination or weather situation. For example, during night, when less
obstacles are expected to be met on the road, the system could rely more on the IR
sub-ensemble. This is also required due to the lack of information in VIS on night.
On the other side, the IR based OD module could also have an important credit
during daytime, not only the VIS one. Still, on a hot summer day, the IR based OD
module could present some drawbacks due to the fact that even the pavement could
be detected as possible obstacle. By a proper and intelligent combination of both the
VIS and IR detection modules, the fused OD results will contain all the obstacles
from the scene, but also possible false alarms, as it is the case of other systems from
the literature. Next, the OR module will have to enter in action and eliminate these
false alarms as soon as possible. The remaining ROIs will be thus real obstacles from
the road and their type/class will be also known; thus, possible actions of obstacles
may be anticipated and the IV system would be prepared to intervene.

3.4.2 The Proposed Obstacle Recognition Module

The efficiency of the OD module could be improved by the use of complementary
VIS and IR information and by computing a compact, but pertinent bimodal signature
of obstacles. This could be accomplished via some extracted features from the BBs
corresponding to the obstacle. Thus, the authors concentrated on ML algorithms to
implement the OR stage: from images corresponding to possible models for each
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class to be detected, pertinent families of features have been extracted and Feature
Vectors (FV) have been constructed.

In the remaining part of this chapter, the OR component is more emphasized, with
the following being presented: the image databases on which the proposed schemes
have been experimented, the measures by which the performances of these schemes
have been evaluated, but also how the FV that will characterize/define each instance
within the system was composed. Our main purpose was not to develop a system
on the whole, but only the OR module which was intended to be based on fusion in
order to exploit the complementary information of VIS and IR cameras. Therefore,
in our work we intended to verify if it worth to perform the fusion: Will the VIS—IR
fusion bring in benefits from the OR point of view, besides the advantages it implies
in the OD step?

3.4.3 Offline and Online Setup

An obstacle recognition system consists in two main parts, as Fig. 4 shows. In the
training step, a database with different BBs enclosing possible obstacles (manually
annotated) from the road is used. In the OR stage, there is also information provided
by the sensors, like in the OD case, but here it takes the form of a training and/or
testing database. The testing part comprises the same pre-processing module like the
training one, but here the test image provided by the OD module is aimed, because
the system runs on-line. A Features Extraction (FE) and Features Selection (FS)

Fig. 4 Training and testing steps in the frame of an OR system
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module follows which together with the last module, i.e. the learning one, has to
accomplish the system parametrization and validation. This latter operation consists
in choosing the most pertinent features to compute an optimized FV which will best
characterize the data from the training database, but also in establishing the classifier
which will best learn the instances from the training set. In the testing step, the FV
used to characterize the test data will comprise the same features determined as being
relevant in the training step.

To conclude, ourODR systembelongs to that category of systems based on pattern
recognition and consists of threemainmodules: (1) sensors (VIS and IR cameras) that
gather the observations to be classified, also including the pre-processing module,
(2) a FEmechanism (often attended by a FS operation) that digitize the observations,
and (3) a classification or description scheme that does the actual job of classifying
or describing observations, relying on the previously obtained information.

Applications based on pattern recognition aims to classify data (also called pat-
terns) based either on a priori knowledge or on some statistical information extracted
from the patterns. How well computers succeed in recognizing patterns depend on
a multitude of factors: how comprehensive is the training set (Does it cover all pos-
sible situations in which objects can appear?); How efficient is the classifier to be
used (Does it succeed in learning well all the objects from the training set and then
experiments performed on the test set provided high accuracies?What about the clas-
sification time? Is its value satisfactory from the viewpoint of a real time system?).
In the frame of our system, we tried to develop an OR module to give affirmative
responses to all these questions.

4 Features Extraction, Selection and Fusion

In the frameofCVapplications, the image visual content represents the only available
source of information. To describe the content of an image, usually some numerical
measures with different possibilities to represent the information could be used. The
images numerical signature is via some extracted features (also called attributes).

The system must learn different classes of objects (like pedestrian, cyclist, vehi-
cle) from several available examples, and then it should be able to recognize similar
examples in new images, unknown. This imply the extraction of some relevant infor-
mation (features) from images, so that the characterization of an image to be made
with as less features as possible to shorten the computing time required by the system
to learn and then to recognize the objects. However, this operation of FE is a very
sensitive one because it has to select a number of features great enough to assure a
proper/good characterization of images, but also low enough to obtain a low process-
ing time. Next, the obtained FVs could be compacted, i.e. optimized, by using a FS
mechanism.

For our system, different families of texture-based features togetherwith statistical
moments and size-related features have been extracted from each BB hypothesis
provided by the stereo-vision ODmodule. We have chosen to extract features as rich
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and diverse as possible in order to take advantage of their complementarity, but if
some features will prove redundant, they would be eliminated by the FS mechanism.

In order to further improve the performances of the system, but also to adapt
the system to various weather or illumination situations, different fusion schemes,
combining VIS and IR information, were proposed. Before presenting how these
steps have been accomplished in the developed experiments, the databases will be
described.

4.1 Image Databases for Our ODR System

4.1.1 The Tetravision Image Database

A visible-infrared image database (i.e. the Tetravision) was used in the most recent
experiments to recognize the type of obstacle previously determined as ROI by a
stereo-visionODmodule. In the frameof the IVfield there are very few systems based
only on passive sensors and even less performing VIS and IR information fusion.
Among them, the Tetravision system proposed at VisLab [50, 51] at the University of
Parma, was designed for pedestrian detection from four stereo correlated VIS—IR
images. A Tetra-vision configuration, comprising stereo CCD cameras and stereo
un-cooled FIR cameras (working in the 7–14µm spectrum) was used.

The annotated database was small, having only 1164 objects, but it is a very
difficult one, because of the high intra-class variability; for each class of objects,
there are three types of poses: Entire (E), Occluded (O) and Group (G) and two
viewing angles: Frontal (F) and Lateral (L) (Fig. 5). We performed experiments for
the classification problems with 4 (P,V,C,B) and 8 (PE, PO, PG, VE, VO, VG, C, B)
classes of objects. The database was randomly divided into a training set (80%) and
a testing set (20%), the class instances being well balanced between the training and
testing sets; unfortunately, there is not a balanced distribution of objects in classes:
the cyclist class represents only 4.8% of objects in our database. The Field of View
(FOV) of the stereo-vision cameras was with almost 0.10 rad greater on each axis
than that of the FIR camera, so the obstacles does not have the same size in VIS and
IR images. Further details and information can be found in [27].

4.1.2 The Robin Image Database

Several companies and research centres, likeBertin technologies, CNES,Cybernetix,
DGA, EADS, INRIA,ONERA,MBDA, SAGEM,THALEShave engaged in 2006 in
the Robin project. This competition was for the evaluation of object detection, object
recognition and image categorisation algorithms. There were six datasets, with two
main competitions for each dataset: some detection tasks (object on a patch) and
some classification tasks (assign a category to a patch containing a centred object).
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Fig. 5 Different images from the tetravision database

Fig. 6 Objects belonging to the 5 classes (standing person, unknown posture, motorbike, tourism
car, utility car) from VIS and IR domains of Robin database

We subscribed for the dataset produced by Bertin-Cybernetix, where the proposed
dataset was made of colour and infrared images of vehicles and pedestrians (Fig. 6).

TheVIS and IR images (with a resolution of 128× 128 pixels) were not correlated
each other, which means that a scene captured in the VIS domain does not necessary
have a correspondent in the IR domain. Our task was the discrimination of humans
and vehicles, so the goal was to assign the correct label to a patch which may contain
an element of a class or some backgrounds. At the contest, the class of detected
object for each BB has to be decided. The Bertin-Cybernetix dataset contains a lot of
images, and every image represented a possible road scene, with one or more objects
therein (groups). The experiments performed on the Robin database comprised two
possible scenarios: classifying with 2 classes (P, V) or with 5 classes (Standing
Person, Unknown posture, Motorbike, Tourism car and Utility car).
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Fig. 7 Different cars and
pedestrians from the images
database Caltech

4.1.3 The Caltech Image Database

The images from the first experiments we developed were most of them provided
by the Caltech Database. A lot of indoor and outdoor images containing different
objects could be found there, but we considered only images with cars or pedestrians
in different arbitrary poses, like Fig. 7 shows. The images were manually selected,
cropped and then resized at a dimension of 256× 256 pixels. In order to increase the
processing speed of the entire algorithm, we considered images in gray level format.

The first experiments we have realized were developed on the Caltech database,
thus only on VIS images. Next, as we obtained the Robin dataset, with also IR
images, even not-correlated with the VIS ones, we developed the first experiments
on IR domain. Finally, when the Tetravision database has been obtained, the fusion
schemes we proposed could be tested.

4.2 Features Extraction

First, the features used to represent the image content in a digital or numeric for-
mat are obtained as FVs. The extracted features could be then compacted to reduce
the size of the image space representation (in the entire image database) by a FS
procedure. Numerical attributes generally describe the colorimetric and/or the geo-
metric properties of the images or of some regions within the images. The choice
of these attributes influences the classification results and the recognition process.
Transforming the visual information (which humans observe easily in images) in
some numerical values, features or attributes of low level (primitives) is not an easy
thing, due to the fact that there are no studies indicating what particular type of
attribute is good (i.e. it succeed in capturing the most relevant information) in any
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object recognition problem. Also, there is little or no research to indicate that types
of feature families are more appropriate on different specific modalities (i.e. in the
VIS and the IR domains). For computing the features, different families of features,
which then could be combined to ensure a wider representation of the image content,
have been aimed. Generally, different types of attributes capture different informa-
tion from the images (this is valid even for attributes belonging to the same family
of features). Thus, to represent the image content, some intuitive, generic and low
level features were used, such as color, texture and shape.

Color is a commonly used feature in the CV domain, especially to recognize
objects fromnature, due to themultitude of colors that can represent different objects;
therefore, it can help in the segmentation or classification process. In the context of
IV applications, where IR images are represented by different gray levels, and VIS
images also suffer a reduction of information due to the existence of situations like
fog, night, etc. images on a single channel (in gray levels) have been considered.

Shape attributes are very useful for representing objects when some a priori infor-
mation is known about the shape of the object. For example, there are a multitude of
applications that use shape features specific to the pedestrian class (it is known that
a pedestrian should have a roughly circular area representing the head; also a pedes-
trian must fall into certain patterns concerning the ratio height/width). By extracting
some features that characterize objects in a general manner, i.e. globally, we believe
better results can be obtained than those based on shape (symmetry, snakes, template
matching), in which all shape of the object must be included in the BB in order to be
recognized in the OR stage.

Since FE is desired to be fast for real-time constraints, the performances of the
entire system depend heavily on the chosen features. We choose to extract obstacle
shape independent but fast to compute features, so we have concentrated on different
texture-based features.We did not select symmetries or edges because they are slower
and it might not work very well for obstacles with arbitrary poses or presenting
occlusions.

4.3 Features Extraction Experiments

In the experiments we performed, different families of texture-based features were
investigated forVIS and respectively IR images formonomodal (Caltech), or bimodal
systems with the possibilities that images were correlated eachother (Tetravision) or
not (Robin).

The experiments were conducted to find out if some features could be better suited
for the VIS domain and others better suited for the IR domain, because the final goal
was to prepare for the VIS—IR fusion. Also, their combination was considered, i.e.
bimodal FVs, to improve the recognition performance, considering their comple-
mentarity. First, the purpose was to find which features are more appropriate for VIS
and respectively for IR modality. Next, which of them are less time consuming, and
finally how to combine them in a proper manner to achieve best results?
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To extract the features characterizing an obstacle, texture-based features were
aimed, because they are shape independent and fast to compute; some statistical
moments and size-related features were also added.

4.3.1 Extracted Feature Families

Width and height of the initial BB enclosing the object were chosen to be part of
the FV because some of the applied transformations deformed the image by a resize
operation. In order to preserve the initial size of the BB, we retained width and height
(2 features for size, denoted geom). A vehicle will have a height approximately equal
to the width, or lower, while for a pedestrian these characteristics would be exactly
the opposite. However, considering that in the image-databases we used there are
also cyclists and backgrounds, or different kind of vehicles, and objects could be
occluded (so not the entire shape of the object will be comprised in the BB), or
grouped (so there will be more objects belonging to the same class in a single BB),
unfortunately these 2 features will not have the discrimination power that one may
think.

The mean, median, mode, variance, standard deviation, skewness and kurtosis
are the statistic moments (7stat) concerning the gray level information we have also
used.

Moments of Hu were also aimed, due to the fact that global properties of the
respective image could be exploited. A significant work considering moments for
pattern recognition was performed by Hu [52] by deriving a set of seven invariant
moments, using non-linear combinations of geometric moments. These invariants
remain the same under image translation, rotation and scaling.

The wavelet families were more extensive experimented in our work. In a first
attempt, wavelet families were aimed to construct the FV and they have been tested
with different mother wavelet and different scales on the first database we achieved,
i.e. the Caltech database. Wavelet transform was a relatively new analysis technique
and replaces the Fourier transform sinusoidal waves by a family generated by trans-
lations and dilations of a window calledmother wavelet. A two-dimensional Discreet
Wavelet Transform (DWT) leads to a decomposition of approximation coefficients
at level j in four components: the approximations at level j+1 and the details in
three orientations (horizontal, vertical, and diagonal). Different wavelet families, like
Daubechies, Coiflet and biorthogonal wavelets, but also fractional B-spline functions
were used to compute different FVs. Different types of fractional B-splines wavelets
also have been investigated: causal, anti-causal, symmetric and generalized. By vary-
ing a parameter of the mother wavelet, a direct control over a number of key wavelet
properties can be obtained: the parametric form of the basis functions, their smooth-
ness, their space-frequency localization, but also the size of the basis functions. The
DWT of a signal was calculated by passing it through a series of filters (high and low
pass filters) and then downsampled. At each level, the signal was decomposed into
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low and high frequencies, and this decomposition halved the resolution since only
half the number of samples were retained to characterize the obstacle. To apply the
wavelet decomposition, for some mother wavelets a resize operation was need. Gen-
erally, a 3, 4 and 5 level decomposition was performed: for one image of 128× 128
pixels, if a Haar wavelet transform was used, then at the first level of decomposition
resulted 64× 64 pixels, at the second level 32× 32 pixels, and so on.

Next, besides features like Haar wavelet, the Gabor wavelet have also been con-
sidered, because both types of wavelets offer complementary information about the
pattern to be classified and have proved good performance in other systems [53].
The mean and the standard deviation of the magnitude of the Gabor coefficients
were calculated for 4 scales and 4 orientations, obtaining thus 32 gbr features.

The Discrete Cosine Transform (DCT) tends to concentrate information, being
intensively used for image compression applications. The first nine DCT coefficients
are suggested to be used as texture features, but inspired by [54] the base component
was ignored. Therefore, we obtained a number of 8 dct features.

For the grayscale images, the co-occurrence matrix characterizes the texture of
the image and the generated coefficients are often called Haralick features. Only
4 of 7 are generally proposed to be used: the homogeneity, entropy, contrast and
correlation. The Gray Level Co-occurrence Matrix (GLCM) is used to explore the
spatial structure of the texture and it captures the probability that some pixels appear
in pairs with the same level of gray but with different orientations. We performed
the computation in 4 different directions: 0◦, 45◦, 90◦ and 135◦ as it is proposed in
[54]. In this manner, we obtained a number of 16 cooc features.

The Run Length Encoding (RLE) method works by reducing the physical size of
a repeating string of characters, i.e. sequences in which the same data value occurred
in many consecutive data elements are stored as a single data value and counted.
For a given image, the proposed method defines a run-length matrix as number of
runs (i.e. the number of pixel segments having the same intensity) starting from each
location of the original image in a predefined direction. Short run emphasis, long run
emphasis, gray-level distribution, run-length distribution and run percentage are the
five features proposed by Galloway. Two supplementary measures (low gray-level
run emphasis and high gray-level run emphasis) have also been considered. Thus, a
set of 7 features obtained in one direction have been chosen, but performed at 0◦ and
90◦ as proposed in [54] yield a number of 14 rle features.

Some signal processing techniques are based on texture filtering and analyze the
frequency contents in the spatial domain. Laws have suggested a set of 5 convolution
masks for FE based on texture. From these 5 masks, a set of 25 two-dimensional
masks have been further obtained and based on these 2D masks, 14 laws features
are reached. These features are then reported to the elements from the first diagonal,
in the following manner: the first 10 features are normalized with the first element
from the diagonal, and the rest of 4 features are normalized with the remaining 4
diagonal elements. To these 14 features, the mean and the standard deviation have
been applied as it is suggested in [54], resulting thus a number of 28 laws features.
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4.3.2 Constructing Different Feature Vectors

In the developed experiments, in this stage our main purpose was to obtain a small
FV and a good classification rate (above 90%).

Comparing the results we obtained, the level 4 of wavelet decomposition gives the
best solution for the obstacle recognition problem considering the size of the FV and
the achieved accuracy rates (recognition rates) on the Caltech database [52]. Also, the
results were better in the case of using 2 classes for the classification (the variability
between classeswas smaller than in the casewith 5 classes) when experimentingwith
the Robin database [55]. When comparing different types of wavelets, the accuracy
given by Daubechies and Biorthogonal wavelets were better than their fractional
counterparts, while causal and generalized fractional wavelets were better than the
anti-causal and symmetric ones [56, 57].

To construct the FV, thewavelet featureswere combinedwithmoments (i.e. within
a features fusion). The mother wavelet used to compute the wavelet decomposition
were causal and generalized B-spline functions (22 causal and 22 generalized), with
different scaling and translation parameters in [52]. Thanks to the fractional B-spline
functions the FVs dimension were reduced from 18× 18 features (corresponding to
the 4th level of wavelet decomposition) to 10 × 10 + 7 + 7 features (corresponding
to the 5th level of wavelet decomposition combined with the 7 statistical moments
and the 7 moments of Hu) for the same classification percentage or even better. The
proposed FVs were tested using a Bayes classifier, a Bayes Net and a Radial Basis
Function (RBF) Network with a normalized Gaussian RBF. By adding moments,
one level of wavelet decomposition has been reduced, i.e. from a FV comprising 324
features, the new FV was having only 114 features, so a third the size of the initial
FV for the same or even better accuracy. In a further experiment, presented in [58]
Daubechies, Coiflet and biorthogonal wavelets were added, resulting in a number of
29 supplementary functions from which to compose the FVs. Like in the previous
case, when testing on Caltech database, the moments demonstrated their power to
increase the accuracy.

The FV from [55] corresponds to the height and width of the original BB of
the object, the 64 Haar wavelet coefficients, the 7 statistical moments, the DCT
coefficients, the GLCM coefficients and the Gabor coefficients. The recognition
rates obtained when experimenting on Robin database were the best in the case of
combining all features together. If compare the accuracy given by the KNN and SVM
classifiers with a 10f-CV test mode, the SVM was much better than the KNN in all
cases. Also the accuracy rates for 5 classes of objects were lower than for 2 classes
of objects, due to the fact that the variability between classes was higher.

When considering the Tetravision database, we concentrated on the Haar wavelet,
obtaining thus 64 features from each modality, VIS and IR. Because the images
representing objects have very small size (especially in VIS), the wavelet decom-
position was chosen to be performed at level one (for VIS images) or level two
(for IR images), and finally we obtained a number of 8× 8 wavelet coefficients for
both types of images. To perform the fusion, for the image representation we choose
the width and height of the original BB, the 7 statistical moments, the wavelet and
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the gabor transforms, the dct, cooc, rle and laws coefficients. Therefore, a number
of 171 features have been extracted from each modality VIS and IR: VIS171 and
IR171 feature vectors were finally retained, as presented in [27]. Due to the fact that
the information is extracted individually from the VIS and IR images, the provided
FVs are called monomodals.

4.3.3 Feature Vectors Evaluation

Different algorithmsofFEprovide different characteristics (aswe alreadymentioned,
grouped in feature-families) which can be combined in different FVs, representing
the inputs into the classifier. The accuracy of the classifier depends on howwell these
features succeed in representing the information and it is not necessary proportional
with their number (or FV dimension). Is it possible that the same FE algorithm
applied on the VIS and on the IR domains to deliver distant results, i.e. to exist
some features better suited for the VIS domain and others better suited for the IR
domain. Also, their combination can bring in some improvements from the viewpoint
of the recognition performance, depending on how complementary they are when
representing the information. There are FE algorithms consuming less time than
others at the extraction of these features from images. There are also families of
features that can be separable (when calculating the coefficients of a family, they can
be calculated individually, and do not need to be calculated all if we do not need all
of them) and this will influence the extraction time of those coefficients.

To assess the performance representation of the numerical attributes, in this section
we present the results of an experiment in which we tested, using a simple classifier
KNN the representation ability of the visual content of each family of attributes.
It does not need a model-selection stage, as the SVM does, because it is not hav-
ing multiple parameters to be optimized before the usage. Still, because SVM is
more parameterizable and therefore better adapted to any classification problem, it
is expected that the recognition rates to be higher by the use of the SVM. First,
the concern was not to optimize the classifier on each family or combination of
feature-families, but to evaluate their individual importance.

Few questions were foreseen when preparing for fusion: 1. Are several features
better adapted for VIS and other better adapted for IR? Or, if a family is behaving
well on VIS, it will be also good on IR? 2. The number of features of one fam-
ily influences the classification rate? A family with many features will provide a
greater recognition rate compared to another family having less features? 3. Are the
chosen features pertinent for the learning process? Or they will suffer of overfitting
(will provide good results on the training set, but they would not predict very well
the test data)?

In the following, the importance of these coefficients but also the individual perfor-
mance of each family of features has been evaluated. To maximize the performance
of individual descriptors, new vectors have been formed as combinations of feature
families. Thus, we have combined the texture descriptors in a single FV of texture
(Text), comprising haar, dct, cooc, gbr, rle, laws and including 162 characteristics
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for each VIS and IR modalities. Adding the 7 statistical moments, a new vector
called (StatText) is obtained. If in addition, we add the 2 geometrical features, the
maximum size vectors (denoted AllFeatures) of 171 features has been obtained. In
order to answer these questions, we used all the vectors comprising families or com-
bination of feature-families and we performed 2 experiments for the classification
problems with 4 and 8 classes of objects. In a first experiment we considered only
the training dataset (932 objects), and the obtained accuracies for the classification
problem with 4 classes of objects was with approximately 10% higher than those
obtained for the classification problem with 8 classes of objects (due to the reduced
number of instances per each object class).

In a first attempt, we used a KNN classifier, because the model selection was
avoided on purpose (the features complexity was aimed in this first set of experi-
ments). The obtained classification results on IR domain were slightly better than
those from the VIS one, but this could be due to the fact that in the dataset the images
from IR domain have a higher resolution compared with their VIS counterparts. We
have also noticed that if a family of features behaves well on IR images, it was pro-
viding also good results on VIS ones. From the obtained results, presented in Table1,
can be observed that the families haar, gbr, laws and dct are better than stat, cooc,
geom and rle. However, the first group of families (except dct) had the largest number
of features, therefore the increased accuracies could be of that reason. In order to
highlight this aspect, we proposed a further careful investigation of individual and
correlated features contribution, by using several FS techniques. The obtained results
indicate that a finer selection process had to be performed, at the features level (not
at their families).

Table 1 Performance representation of monomodal FVs obtained using 10f-CV on the training set
for the classification problem with 4 classes of objects

Input vector Accuracy using 10f-CV Inputs by decreasing bAcc for VIS

Attributes with KNN classifier Input
vector

Accuracy with KNN classifier

Name Number VIS IR VIS IR

geom 2 47.50 47.50 haar 77.00 79.60

stat 7 58.98 66.03 gbr 72.60 81.55

Texture haar 64 77.00 79.60 laws 67.38 69.75

gbr 32 72.60 81.55 dct 65.65 75.00

dct 8 65.65 75.00 stat 58.98 66.03

cooc 16 54.23 66.10 cooc 54.23 66.10

rle 14 42.95 55.00 geom 47.50 47.50

laws 28 67.38 69.75 rle 42.95 55.00

Text 162 83.75 87.13

StatText 169 83.45 87.90

AllFeatures 171 83.67 88.00
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On IR, although the Haar wavelet coefficients are most numerous, they are
exceeded in their performance by Gabor features which are only half as concerning
their number. From the viewpoint of the performance, after gbr and haar features, on
the 3rd and 4th positions are dct and laws features, accounting 5%, respectively 16%
of the total vector, followed by cooc and stat, and finally rle and geom. The geom
features do not have to be ignored, because with only 1% of the features, they suc-
ceed to obtain an accuracy of about 50–60%, as presented in Table1. The conclusion
is that the number of features of one family does not necessary assure a proportional
higher classification rate: there are families with fewer features providing a greater
recognition rate than another family having more features (e.g. gbr vs. haar).

The danger of overfitting is to find features that explain well the training data,
but have no real relevance or no predictive power (for the test set). Generally, one
can notice that the accuracies obtained in the learn-test (LT) stage overperformed
(or are very closed to) the values obtained using the 10f-CV procedure, so our data
is not presenting overfitting. Therefore, we can say we have chosen some general
features, which are capable to retain the pertinent information from both VIS and IR
individual domains.

Next, when running the experiments with the SVM classifier, we have focused on
the feature vector AllFeatures, incorporating all the 171 features, because only after
the FS process we will drop some features if they did not help in the classification
process, i.e. if they have been found as being not relevant.

4.4 Features Selection

In the experiments, we have chosen to extract features as rich and diverse as possi-
ble in order to take advantage of their complementarity, but we did not ignore the
possibility of some redundant information, which therefore has to be eliminated in
order to decrease: the learning complexity and the classification time, but also the
extraction time. In fact, even the number of features is not very high for a given BB,
when considering all the BB hypotheses within an image, it could reach a significant
value and increase significantly the extraction time. The FS step has thus to find a
compact, relevant and consistent set of features for the classification task.

Different FS methods have been tested in order to, first, evaluate the pertinence
of features individually allowing for a ranked list of features and, second, to evaluate
sub-sets of features in order to take into account the correlation between features. Chi
Squared, Information Gain, ReliefF, Significance and Symmetrical Uncertainty have
been first considered, as single-attribute evaluators (Rankers), while for the second
round Correlation and Consistency-based subset-attribute evaluators were used. In
the latter set of FS methods, the Best First, Linear Forward and Genetic Search were
used as subsets generation methods, while for the Ranker ones a thresholding step
was needed.
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Usually, the FS methods are applied only once on the whole training set, but
for a better robustness, we propose to apply the FS methods also according to a
cross-validation scheme. Further details can be found in [27].

4.5 Features Selection Experiments

The FS could be applied independently on VIS and respectively IR vectors or on the
correlated bimodal VISIR vector.

From all tested FS methods, we have retained only those which accomplished a
bi-level optimization criteria, allowing higher classification accuracy on a smaller
number of features: a Ranker one (Fs R75) and a Search one (FsSCV ), as shown in
Table2. The Fs R75 uses Information Gain to evaluate each feature independently
before providing a ranked list of features.After combining in a single list of relevance,
a percentage of 75% features have been further selected. The retained features are the
ones which appeared at least in one of the 100 selection process (by using a 100f-CV
scheme). Even if a family of features provide good results when all features were
considered in a FV, it is possible that no feature of that family will be retained in
the FS process, like is the case of dct family on the VIS modality with the FsSCV

method. Once the selected FVs obtained, the VISIR fusion process followed.

4.6 Fusion

We compared from the viewpoint of accuracy and robustness, three different proba-
bilistic fusion schemes: at the feature level, at the SVMkernels level and respectively
at the matching-scores level. A first fusion scheme is proposing the fusion to be per-
formed at the features level, therefore at a low-level. This fusionwould be obtained in
the frame of the module which realize the FE and FS operations, and for this reason,
it could be performed in two possible ways: between the two modules or after both
of them. Another proposed fusion scheme is a high level one, being realized at the
outputs of the VIS and IR classifiers, combining thus matching-scores. Two possible
ways could be reached here too: a not-adaptive fusion and an adaptive fusion. The
last proposed fusion scheme realizes the combination of the VIS and IR information
at an intermediate level, i.e. at the SVM kernels. Further details and information
about the theory part we considered for the fusion schemes can be found in [27].

For the early features fusion, the results obtained with the bimodal AllFeatures
and selected FVs are shown in Table3, where also the characteristics of the optimized
kernel are given. SingleKernel (SK) is the simple, i.e. classical kernelwithin the SVM
classifier, possible types being polynomial, RBF, sigmoidal, etc. The parameters of
the SK are also given: (SKtype and its hyper-parameters SKpar, and C), where C is
the complexity parameter. The results of a static adaptation of features fusion (sAFF)
scheme having the optimal modality-feature relative weight α∗ are also given. All
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the results obtained with the early-fusion scheme outperformed those obtained with
the monomodal system. The best classification performance (bAcc of 97.7%) was
obtained with the most compact bimodal sVISIR126 representation determined with
our FsSCV method.

The kernel fusion has been also experimented, and it implies learning a BK
(bimodal kernel), as a linear combination of monomodal SKs, involving thus some
parameters to be optimized: BKtype, BKparamVIS, BKparamIR, C, α. Since there
are muchmore parameters to be optimized, the kernel fusion is more flexible than the
early fusion, and it is thus more promising, because it should fit better to VISIR het-
erogeneous data. As it could be noticed from Table3, the best performance (96.9%)
was obtained again with the very compact bimodal FsSCV representation with a
static adaptation fusion of kernels (sAFK) scheme. The results obtained with the
intermediate-fusion scheme are better than those obtained with the monomodal sys-
tem, but they are unfortunately lower than those obtained with the early-fusion sys-
tem, we believe due to the fact that in our image set there is not enough data to train
such a complex fusion model.

The matching-scores fusion involves learning, in an independent manner, two
monomodal SKs and their hyper-parameters, before estimating the relativemodality-
score weight α. For the dynamic dAFSc adaptation case, the optimal value α could
intervene with different values. The static adaptation weight was learned on the
validation set, while the dynamic one was estimated for each test object, on the
fly, during the classification process, in Table3 being given the average optimal
value. The matching-score fusion scheme outperforms monomodal VIS and IR sys-
tems, but also feature and kernel-fusion bimodal systems, with the best performance
(98.7%) being obtained for both static and dynamic adaptation approaches, with the
sVISIR126 representation.

In the case of monomodal systems, the following single kernels were selected:
SK1 = (RBF,2−15,27), SK3 = (RBF,2−19,211) and SK4 = (POL,1,0.5) for VIS domain,
and SK2 = (RBF,2−19,29) and SK5 = (RBF,2−17,29) for IR domain. The single ker-
nels SK6 = (RBF,2−19,27) and SK7 = (RBF,2−17,25) corresponds to bimodal sys-
tems, but also the bimodal kernels BK1 = (RBF-RBF,2−19,2−17,27), BK2 = (RBF-
RBF,2−19,2−17,28) and BK3 = (RBF-RBF,2−17,2−19,27).

The obtained results emphasis the fact that our FsSCV feature selection method
allowsus to determine a compact, but pertinent signature of anobject,which improves
not only the precision and the robustness, but also the computation time of the
classification process. Even that both matching-score and kernel-fusion require the
estimates of two kernels and their hyper-parameters, the problem is easier for the late
fusion because the optimization for one SK and its hyper-parameters is independent
for the other SK, which is not the case of the kernel-based fusion scheme, being
based on a BK instead of two SKs. We believe the latter is more promising, because
it use two correlated kernels and theirs hyper-parameters are necessary, thus requiring
a greater and better balanced image database. In the Tetravision database we used
for the experiments, there are no environmental illumination or weather changes
which could require a dynamic adaptation scheme, explaining thus the small standard
deviation for the dynamic weight dAFSc and the value of 0.5 for the optimal static
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adaptationweights of feature fusion (sAFF), of kernel fusion (sAFK) and respectively
of scores fusion (sAFSc).

4.6.1 Details About the Experiments

Weka (stands for the Waikato Environment for Knowledge Analysis) includes a
collection ofMLalgorithms for datamining tasks, and it is developed in Java (belongs
to University of Waikato in New Zealand). We use Weka in order to apply a learning
method, i.e. a classifier (a supervised one) to our dataset and analyze its output. In
Weka, the performance of all classifiers ismeasured by a common evaluationmodule,
by a confusionmatrix.Before applying any classification algorithm to the data, itmust
be converted to ARFF formwith type information about each attribute. The summary
of the results from the training data ends with the confusion matrix, showing how
many instances of a class have been assigned to each possible classes. If all instances
are classified correctly, only the diagonal elements of the matrix are non-zero. There
are several different levels at which Weka can be used: it provides implementations
of state-of-the-art learning algorithms that can be applied to a dataset or a dataset
can be preprocessed, fed into a learning scheme, and analyze the resulting classifier
and its performance.

Weka is very easy to use, without writing a line of code. Still, in many situations
writing some lines of code could help, especially when multiple combinations of
datasets and algorithms are desired to be compared. In this situation, we recommend
in addition the use of Matlab or Python as a platform to write code sequences and
to run Weka algorithms from there. The Weka class library can be thus accessed
from an own Matlab/Python/Java program, and new ML algorithms could also be
implemented.

In the experiments we performed, we used MATLAB Version for LIBSVM [59]
and our own developed MATLAB Interface for WEKA [60].

In a 10-fold cross-validation process (10f-CV), the original sample of data is
partitioned into 10 sub-samples. From these 10 sub-samples, a single sub-sample is
retained (the validation or testing set), and the remaining 9 sub-samples are used to
train the classifier (the training set). The cross-validation process is then repeated
10 times and a combination of the 10 results (generally the average) is performed in
order to obtain the accuracy parameter.

4.7 Conclusion

In this paper, the features extraction, features selection and fusion techniques were
applied on different VIS and IR databases of images, separately or combined, in
order to encode the information about possible obstacles from the road. Feature
selection methods were used to select only the more discriminant features from
the entire feature vector. The probabilistic fusion schemes were used to further
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improve the results at the features level, at the SVM kernels level and respectively
at the matching-scores level. All these proposed schemes are less susceptible to the
un-calibrations of on-board cameras compared to the ones performed at the lowest
level of information (i.e. at data or pixel level).

Tomorrow vision is that sensors, communications and other operational tech-
nologies will work together with information technologies, to contribute to a new
revolution of systems belonging to IoT. A common data model and sensing and con-
trol architecture that supports the flow of insights is desired, because devices will be
more intelligent. However, a new breed of robots is envisioned, and they are sup-
posed to even understand human emotion, estimate a driver or patient ill state and
act accordingly. Thus, in this chapter a possible recipe has been given for CV-based
applications, where machine learning algorithms proved their efficiency. The pro-
posed system could learn from available databases some features about the obstacles
and new obstacles could be further recognized based on it. To accomplish such a
complex task, methods for features extraction, selection and fusion have been briefly
presented, but also state of the art solutions from the intelligent vehicles domain were
given.

The proposed chapter provide an insight on the available background needed to
construct intelligent computer vision applications for the imminent era of Internet of
Things as concerns scene understanding but also human-computer interaction from
the vision side.

References

1. Who is NAO? https://www.aldebaran.com/en/humanoid-robot/nao-robot. Accessed 30 Aug
2015

2. Asimo of Honda, http://asimo.honda.com/. Accessed 30 Aug 2015
3. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. J. Comput. Netw., Elsevier

54(15), 2787–2805 (2010)
4. daCosta, F.: Rethinking the Internet of Things. Apress, A Scalable Approach to Connecting

Everything (2014). ISBN 13: 978-1-4302-5740-0, 192 Pages
5. Evans, P.C.,Annunziata,M.: Industrial internet: pushing the boundaries ofminds andmachines,

General Electric. http://www.ge.com/docs/chapters/IndustrialInternet.pdf (2012). Accessed
30 Aug 2015

6. General Electric and Accenture, Industrial Internet insights report (2014). Accessed 30 Aug
2015

7. Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A., Lombardi, P., Porta, M.: Artificial Vision
in Road Vehicles, vol. 90, pp. 1258–1271. IEEE Proc. (2002)

8. Li, L., Song, J., Wang, F.Y., Niehsen, W., Zheng, N.N.: New developments and research trends
for intelligent vehicles. IEEE Intell. Syst. 4, 10–14 (2005)

9. Bu, F., Chan, C.Y.: Pedestrian detection in transit bus application-sensing technologies and
safety solutions. IEEE Intell. Veh. Symp. 100–105 (2005)

10. Chan, C.Y., Bu, F.: Literature review of pedestrian detection technologies and sensor survey.
Tech. rept. California PATH Institute of Transportation Studies, Berkeley, CA. Midterm report
(2005)

11. Cutler, R., Davis, L.S.: Robust Real-Time Periodic Motion Detection, Analysis, and Applica-
tions, vol. 22, pp. 781–796, PAMI (2000)

https://www.aldebaran.com/en/humanoid-robot/nao-robot
http://asimo.honda.com/
http://www.ge.com/docs/chapters/IndustrialInternet.pdf


106 A. Apatean et al.

12. Enzweiler, M., Gavrila, D.M.: Monocular Pedestrian Detection: Survey and Experiments, vol.
31, p. 2179–2195. IEEE TPAMI (2009)

13. Gandhi, T., Trivedi, M.M.: Pedestrian collision avoidance systems: a survey of computer vision
based recent studies. In: IEEE Conference on Intelligent Transportation Systems, pp. 976–981
(2006)

14. Scheunert, U., Cramer, H., Fardi, B., Wanielik, G.: Multi sensor based tracking of pedestri-
ans: a survey of suitable movement models. In: IEEE International Symposium on Intelligent
Vehicles, pp. 774–778 (2004)

15. Sun, Z., Bebis, G., Miller, R.: On-road Vehicle Detection: A Review, vol. 28, pp. 694–711.
IEEE TPAMI (2006)

16. McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance:
survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2006)

17. Bishop, R.: A survey of intelligent vehicle applications worldwide. In: Intelligent Vehicles
Symposium (2000)

18. Baldwin, K.C., Duncan, D.D., West, S.K.: Johns Hopkins APL technical digest. 25th ed. Johns
Hopkins University Applied Physics Laboratory. The driver monitor system: ameans of assess-
ing driver performance, pp. 1–10 (2004)

19. Dong, Y., Zhencheng, H., Uchimura, K., Murayama, N.: Driver inattention monitoring system
for intelligent vehicles: a review. IEEE Trans. Intell. Transp. Syst. 12(2), 596–614 (2011)

20. DARPA Grand Challenge, Urban Challenge. http://archive.darpa.mil/grandchallenge/index.
asp (2007)

21. Broggi, A., Medici, P., Zani, P., Coati, A., Panciroli, M.: Autonomous vehicles control in the
VisLab intercontinental autonomous challenge. Annu. Rev. Control 36, 161–171 (2012)

22. A VisLab prototype, www.braive.vislab.it/
23. Guizzo, E.: How google self-driving car works, IEEE spectrum online. http://spectrum.ieee.

org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works (2011)
24. Honda. http://world.honda.com/HDTV/IntelligentNightVision/200408/
25. FLIR Application Story, BMW incorporates thermal imaging cameras in its cars. www.flir.

com/uploadedFiles/ApplicationStory_BMW.pdf (2009)
26. Discant, A., Rogozan, A., Rusu, C., Bensrhair, A.: Sensors for obstacledetection—a survey. In:

30th International Spring Seminar on Electronics Technology. Cluj-Napoca, Romania (2007)
27. Apatean, A., Rogozan, A., Bensrhair, A.: Visible-infrared fusion schemes for road obstacle

classification. J. Transp. Res. Part C: Emerg. Technol. 35, 180–192 (2013)
28. Toulminet, G., et al.: Vehicle detection by means of stereo vision-based obstacles features

extraction and monocular pattern analysis. IEEE Trans. Image Process. 15(8), 2364–2375
(2006)

29. Miron, A., Besbes, B., Rogozan, A., Ainouz, S., Bensrhair, A.: Intensity self similarity features
for pedestrian detection in far-infrared images. In: IEEE Intelligent Vehicles Symposium (IV),
pp. 1120–1125 (2012)

30. Emerich, S., Lupu, E., Rusu, C.: A new set of features for a bimodal system based on on-line
signature and speech. Digit. Signal Process. Arch. 23(3), 928–940 (2013)

31. Zhang,W.L., Liu, L.B.,Yin, S.Y., Zhou,R.Y.,Cai, S.S.,Wei, S.J.:An efficientVLSI architecture
of speeded-up robust feature extraction for high resolution and high frame rate video. Sci. China
Inf. Sci. 56(7), 1–14 (2013)

32. Enzweiler, M., Kanter, P., Gavrila, D.M.: Monocular pedestrian recognition using motion par-
allax. In: IEEE Intelligent Vehicles Symposium, pp. 792–797 (2008)

33. Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst.
108, 4–18 (2007)

34. Keller, C., Enzweiler, M., Gavrila, D.M.: A new benchmark for stereo-based pedestrian detec-
tion. In: IEEE Intelligent Vehicles Symposium (2011)

35. Viola, P., Jones,M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
36. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and

appearance. In: European Conference Computer Vision, pp. 428–441 (2006)

http://archive.darpa.mil/grandchallenge/index.asp
http://archive.darpa.mil/grandchallenge/index.asp
www.braive.vislab.it/
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://world.honda.com/HDTV/IntelligentNightVision/200408/
www.flir.com/uploadedFiles/ApplicationStory_BMW.pdf
www.flir.com/uploadedFiles/ApplicationStory_BMW.pdf


Image Features Extraction, Selection and Fusion for Computer Vision 107

37. Gavrila, D.M.: A Bayesian, exemplar-based approach to hierarchical shape matching. IEEE
Trans. Pattern Anal. Mach. Intell. 29(8), 1408–1421 (2007)

38. Broggi, A., Cerri, P., Antonello, P.C.: Multi-resolution vehicle detection using artificial vision.
In: IEEE Intelligent Vehicles Symposium, pp. 310–314 (2004)

39. Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assem-
bly of robust part detectors. In: European Conference on Computer Vision, pp. 69–81 (2004)

40. Wu, B., Nevatia, R.: Detection and tracking ofmultiple, partially occluded humans by Bayesian
combination of edgelet based part detectors. Int. J. Comput. Vis. 75(2), 247–266 (2007)

41. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 1–110 (2004)

42. Besbes, B., Rogozan, A., Bensrhair, A.: Pedestrian recognition based on hierarchical codebook
of SURF features in visible and infrared images. In: IEEE Intelligent Vehicles Symposium, pp.
156–161 (2010)

43. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance.
Int. J. Comput. Vis. 63(2), 153–161 (2005)

44. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from amoving vehicle.
Int. J. Comput. Vis. 73(1), 41–59 (2007)

45. Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people detec-
tion. In: Proceedings of the 30th DAGM Symposium on Pattern Recognition, pp. 82–91.
Springer,Berlin (2008)

46. Geronimo, D., Lopez, A.M., Sappa, A.D., Graf, T.: Survey of pedestrian detection for advanced
driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)

47. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of
the art. IEEE TPAMI 34(4), 743–761 (2012)

48. Miron, A., Rogozan, A., Ainouz, S., Bensrhair, A., Broggi, A.: An evaluation of the pedestrian
classification in a multi-domain multi-modality setup. Sensors 15(6), 13851–13873 (2015)

49. Krotosky, S.J., Trivedi,M.M.: On color-, infrared-, andmultimodal stereo approaches to pedes-
trian detection. IEEE Trans. Intell. Transp. Syst. 8(4), 619–629 (2007)

50. Bertozzi, M., et al.: Lowlevel pedestrian detection by means of visible and far infra-red tetrav-
ision. In: IEEE Intelligent Vehicles Symposium, pp. 231–236 (2006)

51. Bertozzi,M., et al.:Multi stereo-based pedestrian detection by daylight and far-infrared camera.
In: Hammoud, R., Augmented Vision Perception in Infrared: Algorithms andApplied Systems.
Springer Inc., pp. 371–401 (Ch16) (2009)

52. Apatean, A., Emerich, S., Lupu, E., Rogozan, A., Bensrhair, A.: Ruttier obstacle classification
by use of fractional B-spline wavelets and moments. In: IEEE Region 8 Conference Computer
as a Tool (2007)

53. Sun, Z., Bebis, G., Miller, R.: Monocular precrash vehicle detection: features and classifiers.
IEEE Trans. Image Process. 15, 2019–2034 (2006)

54. Florea, F.:Annotation automatique dmagesmdicales enutilisant leur contenuvisuel et les rgions
textuelles associates. Application dans le contexte dn catalogue de sant en ligne. Ph.D. thesis,
Institut National Des Sciences Appliques, INSA de Rouen, France and Technical University
of Bucharest, Romania (2007)

55. Apatean, A., Rogozan, A., Bensrhair, A.: Objects recognition in visible and infrared images
from the road scene. In: IEEE International Conference on Automation, Quality and Testing,
Robotics, vol. 3, pp. 327–332 (2008)

56. Apatean, A., Emerich, S.: Obstacle recognition by the use of different wavelet families in
visible and infrared images. Carpathian J. Electron. Comput. Eng. 1(1) (2008)

57. Apatean, A., Rogozan, A., Emerich, S., Bensrhair, A.: Wavelets as features for objects recog-
nition. Acta Tehnica Napocensis -Electronics and Telecommunications, vol. 49, pp. 23–26
(2008)

58. Apatean, A., Emerich, S., Lupu, E., Rogozan, A., Bensrhair, A.: Wavelets and moments for
obstacle classification. In: International Symposium on Communications, Control and Signal
Processing, Malta, pp. 882–887 (2008)

59. http://www.csie.ntu.edu.tw/cjlin/libsvm/
60. http://www.cs.waikato.ac.nz/ml/weka/

http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://www.cs.waikato.ac.nz/ml/weka/


Image Feature Extraction Acceleration

Jorge Fernández-Berni, Manuel Suárez, Ricardo Carmona-Galán,
Víctor M. Brea, Rocío del Río, Diego Cabello
and Ángel Rodríguez-Vázquez

Abstract Image feature extraction is instrumental for most of the best-performing
algorithms in computer vision. However, it is also expensive in terms of computa-
tional and memory resources for embedded systems due to the need of dealing with
individual pixels at the earliest processing levels. In this regard, conventional system
architectures do not take advantage of potential exploitation of parallelism and dis-
tributed memory from the very beginning of the processing chain. Raw pixel values
provided by the front-end image sensor are squeezed into a high-speed interface with
the rest of system components. Only then, after deserializing this massive dataflow,
parallelism, if any, is exploited. This chapter introduces a rather different approach
from an architectural point of view. We present two Application-Specific Integrated
Circuits (ASICs) where the 2-D array of photo-sensitive devices featured by regu-
lar imagers is combined with distributed memory supporting concurrent processing.
Custom circuitry is added per pixel in order to accelerate image feature extraction
right at the focal plane. Specifically, the proposed sensing-processing chips aim at
the acceleration of two flagships algorithms within the computer vision community:
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the Viola-Jones face detection algorithm and the Scale Invariant Feature Transform
(SIFT). Experimental results prove the feasibility and benefits of this architectural
solution.

Keywords Image feature extraction · Focal-plane acceleration · Distributed
memory · Parallel processing · Viola-Jones · SIFT · Vision chip

1 Introduction

1.1 Embedded Vision

Embedded vision market is forecast to experience a notable and sustained growth
during the next few years [1]. The integration of hardware and software technolo-
gies is reaching the required maturity to support this growth. At hardware level,
the ever-increasing computational power of Digital Signal Processors (DSPs), Field
Programmable Gate Arrays (FPGAs), General-Purpose Graphics Processing Units
(GP-GPUs) and vision-specific co-processors permit to address the challenging
processing requirements usually demanded by embedded vision applications [2].
At software level, the development of standards like OpenCL [3] or OpenVX [4] as
well as tools like OpenCV [5] or CUDA [6] allow for rapid prototyping and shorter
time to market.

A noticeable trend within this ecosystem of technologies is hardware paralleliza-
tion, commonly in terms of processing operations [7, 8]. However, improving perfor-
mance is not only amatter of parallelizing computational tasks.Memorymanagement
and dataflow organization are crucial aspects to take into account [9, 10]. In the case
of memory management, the limitation arises from the so-called memory gap [11],
leading to a substantial amount of idle time for processing resources due to slow
memory access. The influence of a well-designed dataflow organization on the sys-
tem performance is intimately related to this limitation. The overall objective must
be to avoid moving large amounts of information pieces back and forth between sys-
tem components via intermediate memory modules [2]. Optimization on this point
must be planned after a comprehensive analysis of the processing flow featured by
the targeted algorithm [9]. Particularly, early vision involving pixel-level operations
must be carefully considered as it normally constitutes the most demanding stage in
terms of processing and memory resources.

1.2 Focal-Plane Sensing-Processing Architecture

When all these key factors shaping performance are closely examined from an archi-
tectural point of view, a major disadvantage of conventional system architectures
becomes evident. As can be observed in Fig. 1, vision systems typically consist of a
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Fig. 1 Conventional architecture of embedded vision systems: image sensor, high-speed Analog-
to-Digital Conversion (ADC), memory and processing resources (DSP, GPU etc.)

front-end imager delivering high-quality images at high speed to the rest of system
components. This arrangement, by itself, generates a critical bottleneck associated
with the huge amount of raw data rendered by the imager that must be subsequently
stored and processed from scratch. But even more importantly, it precludes a first
stage of processing acceleration from taking place just at the focal plane in a dis-
tributed and parallel way. Notice that the imager inevitably requires the physical
realization of a 2-D array of photo-sensitive devices topographically assigned to
their corresponding pixel values. This array can be exploited as distributed memory
where the data are directly accessible for concurrent processing by including suit-
able circuitry at pixel level. As a result, the imager will be delivering pre-processed
images, possibly in addition to the original raw information in case the algorithm
needs it to superpose the processing outcome—e.g. highlighting the location of a
tracked object. This architectural approach, referred in the literature as focal-plane
sensing-processing [12] and represented in Fig. 2, presents two fundamental advan-
tages when compared to that of Fig. 1. First of all, it enables a drastic reduction of
memory accesses during low-level processing stages, where pixel-wise operations
are common. Secondly, it permits to design ad-hoc circuitry to accelerate a vision

Fig. 2 Proposed architecture for focal-plane acceleration of image feature extraction. The pixel
array is exploited as distributed memory including per-pixel circuitry for parallel processing
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algorithm according to its specific characteristics. This circuitry can even be imple-
mented in the analog domain for the sake of power and area efficiency since the
pixel values at the focal plane have not been converted to digital yet. On the flip
side, the incorporation of processing circuitry at pixel level reduces, for a prescribed
pixel area, the sensitivity of the imager as less area is devoted to capture light. This
drawback could be overcome by means of the so-called 3-D integration technologies
[13, 14]. In this case, a sensor layer devoting most of its silicon area to capture light
would be stacked and vertically interconnected onto one or more layers exclusively
dedicated to processing. While not mature enough yet for reliable implementation
of sensing-processing stacks, 3-D manufacturing processes will most surely boost
the application frameworks of the research hereby presented.

All in all, this chapter introduces two full-custom focal-plane accelerator sensing-
processing chips. They are our first prototypes aiming respectively at speeding up
the image feature extraction of two flagships algorithms within the embedded vision
field: the Viola-Jones face detection algorithm [15] and the Scale Invariant Feature
Transform (SIFT) [16]. To the best of our knowledge, no prior attempts pointing
to these algorithms have been reported for the proposed sensing-processing archi-
tectural solution. The chapter is organized as follows. After briefly describing both
algorithms, we justify the operations targeted for implementation at the focal plane.
We demonstrate that these operations feature a common underlying processing prim-
itive, the Gaussian filtering, convenient for pixel-level circuitry.We then explain how
this processing primitive has been implemented on both chips. Finally, we provide
experimental results and discuss the guidelines of our future work on this subject
matter.

2 Vision Algorithms

2.1 Viola-Jones Face Detection Algorithm

The Viola-Jones sliding window face detector [15] is considered a milestone in
real-time generic object recognition. It requires a cumbersome previous training,
demanding a large number of cropped frontal face samples. But once trained, the
detection stage is fast thanks to the computation of the integral image, an intermediate
image representation speeding up feature extraction, and to a cascade of classifiers
of progressive complexity. A basic scheme of the Viola-Jones processing flow is
depicted in Fig. 3. Despite its simplicity and detection effectiveness, the algorithm
still requires a considerable amount of computational andmemory resources in terms
of embedded system affordability. Different approaches have been proposed in the
literature in order to increase the implementation performance: by exploiting the
highly parallel computation structure of GPUs [17, 18]; by making the most of the
logic and memory capabilities of FPGAs [19, 20]; by custom design of specialized
digital hardware [21] etc.
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Fig. 3 Simplified scheme of the Viola-Jones processing flow

In order to evaluate the possibilities for focal-plane acceleration, our interest
focuses on pixel-level operations. For the Viola-Jones algorithm, these operations
take place during the computation of the integral image, defined as:

II(x, y) =
x∑

x′=1

y∑

y′=1

I(x′, y′) (1)

where I(x, y) represents the input image. That is, each pixel composing II(x, y) is
equal to the sum of all the pixels above and to the left of the corresponding pixel at the
input image. The first advantage of the integral image is that its calculation permits
to compute the sum of any rectangular region of the input image by accessing only
four pixels of the matrix II(x, y). This is critical for real-time operation, given the
potential large number of Haar-like features to be extracted—2135 in total for the
OpenCV baseline implementation. The second advantage is that the computation of
the integral image fits very well into a pipeline architecture—typically implemented
in DSPs—by making use of the following pair of recurrences:

{
r(x, y) = r(x, y − 1) + I(x, y)
II(x, y) = II(x − 1, y) + r(x, y)

(2)

with r(x, 0) = 0 and II(0, y) = 0. The matrix II(x, y) can thus be obtained in one
pass over the input image.

Despite these advantages, the purely sequential approach defined by Eq. (2) is
still computationally expensive and memory access intensive [20, 22]. It usually
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accounts for a large fraction of the total execution time due to its linear dependence
on the number of pixels of the input image [23]. Thus, its parallelization would
boost the performance of the whole algorithm. In the next sections, we will propose
an acceleration scheme that can clearly benefit from the concurrent operation and
distributed memory provided by focal-plane architectures.

2.2 Scale Invariant Feature Transform (SIFT)

The SIFT algorithm constitutes a combination of keypoint detector and correspond-
ing feature descriptor encoding [16]. It can be broken up into four main steps:

1. Scale-space extrema detection: generation of the Gaussian and subsequent
Difference-of-Gaussian (DoG) pyramids, searching for the extrema points in the
DoG pyramid.

2. Accurate keypoint location in the scale space.
3. Orientation assignment to the corresponding keypoint, searching for the main

orientation or main component from the gradient in its neighborhood.
4. Keypoint descriptor: construction of a vector representative of the local charac-

teristics of the keypoint in a wider neighborhood with orientation correction.

Numerous examples of SIFT implementations on different platforms have been
reported: general-purpose CPU [24], GPU [25, 26], FPGA [27, 28], FPGA + DSP
[29], specific digital co-processors [30] etc. As for the Viola-Jones, the lowest-level
operation of the SIFT, namely the generation of the Gaussian pyramid, dominates the
workload of the algorithm, reaching up to 90% of the whole process [31]. Figure4

Fig. 4 Gaussian pyramid with its associated DoGs
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shows an example ofGaussian pyramidwith its associatedDoGs. It ismade up of sets
of filtered images (scales). Every octave starts with a half-sized downscaling of the
previous octave. The filter bandwidth, σ , applied for a new scale within each octave
is the one applied in the previous scale multiplied by a constant factor k: σn = kσn−1.
Each octave is originally divided into an integer number of scales, s, so k = 21/s.
A total of s + 3 [16] images must be produced in the stack of blurred images for
extrema detection to cover a complete octave. Once the Gaussian pyramid is built,
the scales are subtracted from each other, obtaining the DoGs as an approximation
to the Laplacian operator.

Our objective is therefore to accelerate the SIFT Gaussian pyramid generation by
means of in-pixel circuitry performing concurrent processing. For the sake of relax-
ation on the hardware requirements, we carried out a preliminary study to determine
the number of octaves and scales to be provided by our focal-plane sensor-processor.
For this study, we used a publicly available version of SIFT in MATLAB [32].
Every octave is generated from a scale of the previous octave downsized by a 1/4
factor (1/2×1/2), decreasing the pixels per octave. Therefore, the maximum poten-
tial keypoints decrease rapidly with the octaves o = 0, 1, 2 . . . as M×N/2o×2, with
M×N being the size of the input image. Assuming a resolution of 320×240 pixels
(QVGA), we obtained the keypoints for two images under many scales and rotation
transformations. The reason of this moderate resolution is that the area to be allo-
cated for in-pixel processing circuitry makes it difficult to reach larger resolutions
in standard CMOS technologies with a reasonable chip size. The results for two of
the applied transformations together with the test images are represented in Fig. 5.
Clearly, the 3 first octaves render almost all the keypoints. Concerning scales, we
have two opposite contributions. On the one hand, less scales per octave means more
distance between scales, causing more pixels to exceed the threshold to be sorted
out as keypoints. On the other hand, reducing scales also means to diminish the total
number of potential keypoints. Both combined effects make it difficult to choose a
specific value for scales as in the case of the octaves. The result of the scale analy-
sis for the same respective test images and transformations as in Fig. 5 is depicted

Fig. 5 The number of keypoints hardly increases from the 3 first octaves. This will be the reference
value for our implementation
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Fig. 6 The number of keypoints increases with the number of scales per octave. Trading this result
for computational demand and hardware complexity leads to a targeted number of 6 scales. The
same test images and transformations as in Fig. 5 are respectively used

in Fig. 6. It shows that the amount of keypoints increases monotonically with the
scales. Nevertheless, increasing the scales per octave is not an option because of its
corresponding computational demand and hardware complexity. Trading all these
aspects, we conclude that 6 scales suffice for Gaussian pyramid generation at the
focal plane. This figure coincides with the number of scales proposed in [16].

3 Gaussian Filtering

We demonstrate in this section that Gaussian filtering is the common underlying
processing primitive for both the Viola-Jones and SIFT algorithms. While the role of
Gaussian filtering is well defined for the latter, it is not obvious at all for the former.
In order to understand the relation, we first need to establish a formal mathematical
framework. Gaussian filtering is best illustrated in terms of a diffusion process. The
concept of diffusion is widely applied in physics. It explains the equalization process
undergone by an initially uneven concentration of a certain magnitude. A typical
example is heat diffusion. Mathematically, a diffusion process can be defined by
considering a function V (x, t) defined over a continuous space, in this case a plane,
for every time instant. At each point x = (x1, x2), the linear diffusion of the function
V (.) is described by the following well-known partial differential equation [33]:

∂V

∂t
= ∇ · (D∇V ) (3)

where D is referred to as the diffusion coefficient. If D does not depend on the
position:

∂V

∂t
= D∇2V (4)



Image Feature Extraction Acceleration 117

and realizing the spatial Fourier transform of this equation, we obtain:

∂ V̂ (k)

∂t
= −4π2D|k|2V̂ (k) (5)

wherek represents thewave number vector in the continuous Fourier domain. Finally,
by solving this equation we have:

V̂ (k, t) = V̂ (k, 0)e−4π2Dt|k|2 (6)

where V̂ (k, t) is the spatial Fourier transform of the function V (.) at time instant t
and V̂ (k, 0) is the spatial Fourier transform of the function V (.) at time t = 0, that is,
just before starting the diffusion. Equation (6) can be written as a transfer function:

Ĝ(k, t) = V̂ (k, t)

V̂ (k, 0)
= e−4π2Dt|k|2 (7)

which, by defining σ = √
2Dt, is transformed into:

Ĝ(k, σ ) = e−2π2σ 2|k|2 (8)

This transfer function corresponds to the Fourier transform of a spatial Gaussian
filter of the form:

G(x, σ ) = 1

2πσ 2
e− |x|2

2σ2 (9)

and therefore the diffusion process is equivalent to the convolution expressed by the
following equation:

V (x, t) = 1

2πσ 2
e− |x|2

2σ2 ∗ V (x, 0) (10)

We can see that a diffusion process intrinsically entails a spatial Gaussian filtering
which takes place along time. The width of the filter is determined by the time the
diffusion is permitted to evolve: the longer the diffusion time, t, the larger the width
of the corresponding filter, σ . This means that, ideally, any width is possible provided
that a sufficiently fine temporal control is available. From the point of view of the
Fourier domain, we can define the diffusion as an isotropic lowpass filter whose
bandwidth is controlled by t. The longer t, the narrower the bandwidth of the filter
around the dc component (Fig. 7). Eventually, for t → ∞, all the spatial frequencies
but the dc component are removed. Furthermore, this dc component is completely
unaffected by the diffusion, that is, Ĝ(0, t) = 1 ∀t. It is just this characteristic of
the Gaussian filtering what constitutes the missing link with the computation of the
integral image. When discretized and applied to a set of pixels, this property says
that a progressive Gaussian filtering eventually leads to the average of the values the



118 J. Fernández-Berni et al.

Fig. 7 Spatial Gaussian filters with increasing σ represented in the Fourier domain

pixels had before starting the filtering process. This average is a scaled version of
the sum of the original pixels, precisely the calculation required for each pixel of the
integral image. Furthermore, as we will see shortly, the averaging process inherent
to the Gaussian filtering is extremely helpful to cope at hardware level with the large
signal range demanded by the computation of the integral image.

4 Focal-Plane Implementation of Gaussian Filtering

The simple circuit depicted in Fig. 8a is our starting point to explain how we have
addressed the design of in-pixel circuitry capable of implementingGaussian filtering.
Assuming that the initial conditions of the capacitors are V10 and V20, the evolution
of the circuit dynamics is described by:

{
C dV1

dt = − V1(t)−V2(t)
R

C dV2
dt = V1(t)−V2(t)

R

(11)

whose solution is:
[

V1(t)
V2(t)

]
= 1

2
(V10 + V20)

[
1
1

]
+ 1

2
(V10 − V20)

[
1

−1

]
e−2t/τ (12)

where τ = RC. Equation (12) physically represents a charge diffusion process—i.e.
Gaussian filtering—taking place along time between both capacitors at a pace deter-

(a) (b)

Fig. 8 2-node ideal diffusion circuit (a) and its transistor-based implementation (b)
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mined by the time constant τ . For t → ∞, both capacitors hold the same voltage,
(V10 + V20)/2, that is, the average of their initial conditions. In order to achieve an
area-efficient physical realization of this circuit, we can substitute the resistor by
an MOS transistor (Fig. 8b) whose gate terminal additionally permits to control the
activation-deactivation of the dynamics described by Eq. (12). Now suppose that V10

and V20 correspond respectively to two neighboring pixel values resulting from a
photo-integration period previously set to capture a new image. If you are meant to
compute the integral image from this new image, you will eventually want to add up
both pixels as fast as possible. This can be accomplished by designing the proposed
circuit with theminimum possible time constant τ in order to rapidly reach the steady
state. Conversely, if you are meant to obtain the Gaussian pyramid, you will need fine
control of the filtering process in order to increasingly blur the just captured image.
In this case, the time constant τ cannot be arbitrarily small for the sake of making that
fine control feasible. There are therefore conflicting design requirements depending
on the specific task to be implemented by our basic circuit. In this scenario, we next
present the particular realization of the diffusion process satisfying such requirements
for both, the integral image computation and the Gaussian pyramid generation.

4.1 Focal-Plane Circuitry for Integral Image

A simplified scheme of how the charge diffusion process just described can be gen-
eralized for a complete image is depicted in Fig. 9. The MOS transistor in Fig. 8b has
been substituted, to avoid clutter, for a simple switch for each connection between
neighboring pixels in horizontal and vertical directions. This also highlights the fact
that the MOS transistors are designed to have the minimum possible resistance when
they are set ON, thus contributing to reduce the time constant τ . The state of these
switches—ON or OFF—is controlled by the reconfiguration signals ENSi,i+1C

and
ENSj,j+1R

for columns and rows respectively. The voltages Vpxi,j represent the analog
pixel values just after the photo-diode array has captured a new image. The integral
image—really the averaged version provided by the diffusion process—is obtained
by progressively establishing the adequate interconnection patterns in ENSi,i+1C

and
ENSj,j+1R

according to the location of the pixel II(x, y) being calculated at themoment.
For example, we would need to activate ENS1,2C

and ENS1,2R
, letting the remaining

signals deactivated, in order to compute II(2, 2). Each diffusion process producing
an integral image pixel is followed by a stage of analog-to-digital conversion that
takes place concurrently with the readjustment of the interconnection patterns for the
next pixel to be computed. More details about the whole process and the additional
circuitry required per pixel can be found in [34].
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Fig. 9 Simplified scheme of how the diffusion process can be reconfigured to compute the integral
image at the focal plane

4.2 Focal-Plane Circuitry for Gaussian Pyramid

As previously mentioned, the generation of the Gaussian pyramid requires an accu-
rate control of the diffusion process in the circuit of Fig. 8b. A possible approach to
achieve such control is to design specific on-chip circuitry providing precise timing
over the gate signal of the MOS transistor [35]. Another possibility, featuring more
linearity and even further diffusion control, is considered here. It is based on so-called
Switched Capacitor (SC) circuits [36]. In this case, our reference circuit of Fig. 8a
is transformed into that of Fig. 10. Two intermediate capacitors are introduced along
with four switches enabling a gradual charge diffusion between the capacitors hold-
ing neighboring pixel values. Two non-overlapping clock phases driving the switches
are used to carry out this progressive transfer of charge. It can be mathematically
demonstrated [37] that this circuit configuration, called ‘double Euler’, is equivalent
to apply a Gaussian filter with a width σ (see Eqs. (7) and (8)) given by:
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Fig. 10 In order to compute the Gaussian pyramid, two intermediate capacitors and four switches
permit to gradually perform the charge diffusion between the capacitors holding neighboring pixel
values

σ =
√
2nCE

C
(13)

where n is the number of cycles completed by the clock phases.We are assuming that
CE 	 C. A simulation example of a four-pixel diffusion featuring a diffusion cycle
as short as 90ns is shown in Fig. 11. In the final physical realization, this diffusion

Fig. 11 Simulated temporal evolution of a four-pixel diffusion based on a double Euler SC circuit
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cycle is adjusted in such a way that the targeted 3 octaves and 6 scales per octave can
be attained. We therefore conclude that the discrete-time SC-based implementation
of charge diffusion between capacitors provides the requested fine control of the
underlying Gaussian filtering empowering the generation of the Gaussian pyramid
at the focal plane.

5 Experimental Results

5.1 Viola-Jones Focal-Plane Accelerator Chip

The proposed prototype vision sensor presents the floorplan depicted in Fig. 12,
featuring the elementary sensing-processing pixel shown in Fig. 13. The pixel array
can be reconfigured block-wise by peripheral circuitry. The reconfiguration patterns
are loaded serially into two shift registers that determine respectively which neighbor
columns and rows can interact and which ones stay disconnected. There is also
the possibility of loading in parallel up to six different patterns representing six
successive image pixelation scales. This is achieved by means of control signals
distributed regularly along the horizontal and vertical dimensions of the array [34].
The reconfiguration signals coming from the periphery map into the signals ENSi,i+1 ,
ENSj,j+1 , ENSQi,i+1 and ENSQj,j+1 at pixel level, where the coordinates (i, j) denote
the location of the array cell considered. These signals control the activation of
MOS switches for charge redistribution between the nMOS capacitors holding the
voltages VSij and VSQij , respectively. Charge redistribution is the primary processing
task that supports all the functionalities of the array, enabling low-power operation.
ConcerningA-to-D conversion, there are four 8-bit ADCs. These converters feature a
tunable conversion range, including rail-to-rail, and a conversion time of 200nswhen
clocked at 50MHz. The column and row selection circuitry is also implemented by
peripheral shift registers where a single logic ‘1’ is shifted according to the location
of the pixel to be converted.

The prototype chip together with the FPGA-based test system where it has been
integrated can be seen in Fig. 14. An example of on-chip integral image computation
is depicted in Fig. 15. As just explained, the sensing-processing array is capable
of computing an averaged version of the actual integral image defined by Eq. (1),
mathematically described as:

IIav(x, y) = 1

x · y

x∑

x′=1

y∑

y′=1

I(x′, y′) (14)

In Fig. 15, we can visualize the averaged integral image delivered by the chip
and the integral image that can be directly derived from it. This integral image is
compared with the ideal case obtained off-chip with MATLAB from the original
image captured by the sensor, attaining an RMSE of 1.62%. Notice that, in order
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Fig. 12 Floorplan of the Viola-Jones focal-plane accelerator chip

to obtain II(x, y), the only operation to be performed off-chip over IIav(x, y) is to
multiply each averaged pixel by its row and column number. No extra memory
accesses are required for this task.

The chip has been manufactured in a standard 0.18µmCMOS process. It features
a resolution of 320×240 pixels and a power consumption of 55.2mWwhen operat-
ing at 30 fps. This power consumption includes the image capture at that frame rate,
the computation of the integral image for each captured image and the analog-to-
digital conversion of the outcome for off-chip delivery. This figure is similar to that
of state-of-the-art commercial image sensors, in this case with the add-on of focal-
plane pre-processing alleviating the computational load of subsequent stages. The
undesired effects of this add-on are reduced resolution and lower sensitivity. Asmen-
tioned in the introduction, these handicaps could be surmounted by 3-D integration.
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Fig. 13 Elementary sensing-processing pixel of the Viola-Jones focal-plane accelerator chip

Fig. 14 Photograph of the Viola-Jones focal-plane accelerator chip and the FPGA-based system
where it has been integrated

A direct transformation of the simplified scheme of Fig. 9 into a stacked structure is
possible, as shown in Fig. 16. The top tier would exclusively include photo-diodes
and some readout circuitry whereas the bottom tier would implement the reconfig-
urable diffusion network. The interconnection between both tiers would be carried
out by the so-called Through-Silicon Vias (TSVs). This structure keeps maximum
parallelism at processing while drastically increasing resolution and sensitivity.
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Fig. 15 Example of on-chip integral image computation and comparison with the ideal case

Fig. 16 Transformation of the simplified scheme of Fig. 9 into a stacked structure

5.2 SIFT Focal-Plane Accelerator Chip

The SIFT accelerator chip presents a similar floorplan to that of the Viola-Jones
prototype. However, its elementary sensing-processing cell significantly differs. A
simplified scheme is depicted in Fig. 17. The constituent blocks are mainly four
photo-diodes, the local analogmemories (LAMs), the comparator forA/Dconversion
and the switched capacitor network. During the acquisition stage, the photo-diodes,
the capacitor C and the LAMs work together to implement a technique known as
correlated double sampling [38] that improves the image quality. The LAMs jointly
with the diffussion network carry out the Gaussian filtering. The capacitor C and
the inverter make up the A/D comparator that would drive a register in the bottom
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Fig. 17 Simplified scheme
of the elementary
sensing-processing cell
designed for the SIFT
focal-plane accelerator chip

tier by a TSV on CMOS-3D technologies, or peripheral circuits on conventional
CMOS. Every cell is 4-connected to its closest neighbors in the North, South, East
and West directions. Given that every cell includes four photo-diodes, 4 internal and
8 peripheral interconnections are required.

Two microphotographs of the chip together with the different components of the
camera module built for test purposes are reproduced in Fig. 18. This prototype,
also manufactured in a standard 0.18µm CMOS process, features a resolution of
176×120 pixels and can generate 120 Gaussian pyramids per second with a power
consumption of 70mW. One of the operations required for Gaussian pyramid gen-
eration is downscaling. As previously commented, the 3 first octaves are the most
important ones in the performance of SIFT. This corresponds with downscaling at
ratios 4:1 and 16:1 for octaves 2 and 3, respectively. The chip includes the hard-
ware required to implement this spatial resolution reduction. An example is shown
in Fig. 19. The images to the left are represented with the same sizes in order to visu-
ally highlight the effects of downscaling. Another example, in this case of on-chip
Gaussian filtering, is shown in Fig. 20. The upper left image constitutes the input
whereas the three remaining images, from left to right and top to down, correspond
to σ = 1.77, (clock cyles n = 19), σ = 2.17 (n = 29), and σ = 2.51 (n = 39). More
details about the performance of this chip can be found in [39].

This chipwas conceived, from the very beginning, for implementation in 3-D inte-
gration technologies [40]. Unfortunately, these technologies are not mature enough
yet for reliable fabrication. Manufacturing costs of prototypes are also extremely
high for the time being, with long turnarounds, exceeding 1 year. In these circum-
stances, we were forced to redistribute the original two-tier circuit layout devised for
a CMOS 3-D stack in order to fit it into a conventional planar CMOS technology.
The result is depicted in Fig. 21.
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Fig. 18 Photograph of the SIFT focal-plane accelerator chip together with the camera module
where it has been integrated

O1

O2

O3

Fig. 19 On-chip image resolution reduction by 4:1 and 16:1 as part of the calculation of the pyramid
octaves
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Fig. 20 Different snapshots of on-chip Gaussian pyramid

Fig. 21 Redistribution of circuits for Gaussian pyramid generation when mapping the original
CMOS 3D-based architecture onto a conventional planar CMOS technology

5.3 Performance Comparison

Comparing the performance of the implemented prototypes with state-of-the-art
focal-plane accelerator chips is not straightforward since every realization addresses
a different functionality. As an example, we have included the most significant char-
acteristics of our prototypes together with two recently reported focal-plane sensor-
processor chips in Table1. The Viola-Jones chip embeds extra functionalities in
addition to the computation of the integral image [41] while featuring the largest
resolution and the smallest pixel pitch, with a cost in terms of a reduced fill factor
and increased energy consumption. Concerning the SIFT chip, one of the reasons of
the energy overhead is the inherent high number of A/D conversions of the whole
Gaussian pyramid plus the input scene, which amounts to 40 A/D conversions of
the entire pixel array. Still, the acceleration at the focal plane provided by this chip
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Table 1 Comparison of the implemented prototypes with state-of-the-art focal-plane sensor-
processor chips

Reference Ref. [42] Ref. [43] Viola-Jones chip SIFT chip

Function Edge filtering,
tracking, HDR

2-D optic flow
estimation

HDR, integral
image, Gaussian
filtering,
programmable
pixelation

Gaussian
pyramid

Tech. (µm) 0.18 0.18 0.18 0.18

Supply (V) 0.5 3.3 1.8 1.8

Resolution 64×64 64×64 320×240 176×120

Pixel pitch (µm) 20 28.8 19.6 44

Fill factor (%) 32.4 18.32 5.4 10.25

Dyn. range (dB) 105 − 102 −
Power consumption 1.25 0.89 23.9 26.5

(nW/px·frame)

pays off when comparing with more conventional solutions, as shown in Table2.
The power consumption of conventional CMOS imagers from Omnivision [44] fea-
turing the image resolution tackled by the corresponding processor is incorporated
in each of the entries related to conventional solutions. We have not accounted for
accesses to external memories first because such costs would also be present if our
chip were part of a complete hardware platform for a particular application; and

Table 2 Comparison of the SIFT focal-plane accelerator chip with conventional solutions

Hardware
solution

Functionality Energy/frame Energy/pixel Mpx/s

SIFT chip Gaussian 176×120 resol. 26.5nJ/px 2.64

180nm CMOS pyramid 70mW @ 8ms

0.56mJ/frame

Ref. [45] Gaussian VGA resol. 15.5µJ/px 2.26

OV9655 +
Core-i7

pyramid 90mW @ 30fps
+ 35W@ 136ms

4.8 J/frame

Ref. [46] Gaussian VGA resolution 240µJ/px 0.15

OV9655 +
Core-2-Duo

pyramid 90mW + 35W
@ 2.1s

73.7 J/frame

Ref. [47] Gaussian 350×256 resol. 4.4µJ/px 0.91

OV6922 + pyramid 30mW + 4W

Qualcomm @ 98.5ms

Snapdragon S4 0.4 J/frame
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second because they are hardly predictable even with memory models. The energy
cost of our chip outperforms that of an imager + conventional processor unit—even
a low-power unit—in three orders of magnitude with similar processing speed. This
leads to a combined speed-power figure of merit which makes our chip outperform
conventional solutions in the range of three to six orders of magnitude.

6 Conclusions and Future Work

Focal-plane sensing-processing constitutes an architectural approach that can boost
the performance of vision algorithms running on embedded systems. Specifically,
early vision stages can greatly benefit from focal-plane acceleration by exploiting the
distributed memory and concurrent processing in 2-D arrays of sensing-processing
pixels. This chapter provides an overview of the fundamental concepts driving the
design and implementation of two focal-plane accelerator chips tailored, respectively,
for the Viola-Jones and the SIFT algorithms. These are the first steps within a long-
term research framework aiming at achieving image sensors capable of simultane-
ously rendering high-resolution high-quality raw images and valuable pre-processing
at ultra-low energy cost. The future work will be singularly biased by the availability
of monolithic sensing-processing stacks. 3-D technologies will remove the tradeoff
arising when it comes to allocating silicon area for sensors and processors on the
same plane. High sensitivity and high processing parallelization will be compatible
on the same chip. 3-D stacks will also foster alternative ways of making the most of
vertical across-chip interconnections, from transistor level up to system architecture.
In summary, 3-D integration technologies are the natural solution to develop feature
extractors with low power budget without degrading image quality. Our prototypes
on planar processes already consider future migration to these technologies, and this
will continue to be a compulsory requirement of forthcoming designs.
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Satellite Image Matching and Registration:
A Comparative Study Using Invariant Local
Features
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Marcello M. Giovenco, Ralf Reulke, Eid Emary and Aboul Ella Hassanien

Abstract The rapid increasing of remote sensing (RS) data in many applications
ignites a spark of interest in the process of satellite image matching and registration.
These data are collected through remote sensors then processed and interpreted by
means of image processing algorithms. They are taken from different sensors, view-
points, or times for many industrial and governmental applications covering agricul-
ture, forestry, urban and regional planning, geology, water resources, and others. In
this chapter, a feature-based registration of optical and radar images from same and
different sensors using invariant local features is presented. The registration process
starts with the feature extraction and matching stages which are considered as key
issues when processing remote sensing data from single or multi-sensors. Then, the
geometric transformation models are applied followed by the interpolation method in
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order to get a final registered version. As a pre-processing step, speckle noise removal
is performed on radar images in order to reduce the number of false detections. In
a similar fashion, optical images are also processed by sharpening and enhancing
edges in order to get more accurate detections. Different blob, corner and scale based
feature detectors are tested on both optical and radar images. The list of tested detec-
tors includes: SIFT, SURF, FAST, MSER, Harris, GFTT, ORB, BRISK and Star.
In this work, five of these detectors compute their own descriptors (SIFT, SURF,
ORB, BRISK, and BRIEF), while others use the steps involved in SIFT descriptor
to compute the feature vectors describing the detected keypoints. A filtering process
is proposed in order to control the number of extracted keypoints from high reso-
lution satellite images for a real time processing. In this step, the keypoints or the
ground control points (GCPs) are sorted according to the response strength mea-
sured based on their cornerness. A threshold value is chosen to control the extracted
keypoints and finalize the extraction phase. Then, the pairwise matches between the
input images are calculated by matching the corresponding feature vectors. Once the
list of tie points is calculated, a full registration process is followed by applying dif-
ferent geometric transformations to perform the warping phase. Finally and once the
transformation model estimation is done, it is followed by blending and compositing
the registered version. The results included in this chapter showed a good perfor-
mance for invariant local feature detectors. For example, SIFT, SURF, Harris, FAST
and GFTT achieve better performance on optical images while SIFT gives also bet-
ter results on radar images which suffer from speckle noise. Furthermore, through
measuring the inliers ratios, repeatability, and robustness against noise, variety of
comparisons have been done using different local feature detectors and descriptors
in addition to evaluating the whole registration process. The tested optical and radar
images are from RapidEye, Pléiades, TET-1, ASTER, IKONOS-2, and TerraSAR-X
satellite sensors in different spatial resolutions, covering some areas in Australia,
Egypt, and Germany.

1 Introduction

The detection and matching of features from images taken from different sensors,
viewpoints, or at different times are mandatory tasks in manipulating and processing
data for many fields like remote sensing and medical imaging. Many local feature
detection methods have been proposed and developed for this purpose [1, 2]. These
two processes are basic tasks when registering or fusing remote sensing data for
many applications. Huge satellite imagery data are now existing in high resolutions
and different formats through variety of sensors and cameras for different purposes.
Depending on the application of the remote sensing data, some achievements have
been remarked but there is still a need for improving the detection and the matching
processes for more accurate alignment and registration of images especially those
with different modalities [3, 4]. A set of corresponding features or the matching
points between two images is used later to know how they both are related to each
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other. This step is very important for any further tasks like image alignment and
registration and image fusion [3, 5].

Classical image registration process includes the detection of features from images
as the first step. These features are classified into local and global features and might
be represented by points, edges, corners and contours or by other features [6]. For
example, corners usually represent a point in which the directions of two edges have
a clear change while blobs are known as regions of interest. Once the features are
extracted from images, the second step or the matching process starts by comparing
the corresponding feature descriptors of the extracted keypoints. A Final set of inliers
or tie points should be determined in order to stitch the input images. The results can
be enhanced by means of bundle adjustment in case of multiple images or panorama
[7]. The third and the fourth steps of the registration process include the estimation
of the transformation model and resampling and compositing the registered version.

In literature, automatic alignment and stitching can be divided into two categories:
direct [8] and feature based [7, 9]. Direct methods use all the image data which may
provide very accurate registration based on a close initialization [8]. Feature based
methods do not need initialization. Using invariant features enables reliable matching
despite of different possible transformations (e.g. rotation, zooming, etc.). The main
steps of automatic stitching can be summarized as follows [5]: (1) Extract the invariant
features from all input images, (2) find a number of nearest neighbours for each
feature, (3) for each image, select some candidate matching images that have the
most feature matches to this image, (4) geometrically, find consistent feature matches,
(5) verify image matches by finding connected components of image matches, (6)
an enhancement could be chosen by performing bundle adjustment to find intrinsic
and extrinsic camera parameters for each connected component, and finally, (7)
apply multi-band blending to obtain the output stitched image [7]. A local feature
is considered as an image pattern which differs from its direct neighbourhoods and
is usually represented by points, edges, corners or others as in [6]. Based on such
representations, many feature detectors have been proposed, for example, Harris and
FAST detectors work based on corner detection while SIFT and SURF work based on
points or blobs. The last two detectors have been recently used in many applications
and recorded a good performance against rotation, scaling and blurring [2].

Most of the current proposed methods for satellite image registration still have
some limitations especially on very high and high resolution images taken from same
or different sensors. Furthermore, applications that use image registration/fusion
methods require more reliable, accurate, and robust techniques that have real time
processing and less hardware requirements. The work presented here aims to enhance
the registration process through combining invariant local feature methods with effi-
cient geometric transformation models and image resampling techniques for achiev-
ing a generalized and enhanced registration scheme applicable for satellite images.

In this chapter, we will focus on feature-based methods using invariant local
features. Section 2 will highlight some concepts and list different applications of
image registration. Section 3 will discuss the steps involved in the registration process,
in addition to the proposed registration scheme. Then, the experiments on different
optical and radar images are followed with examples and a detailed discussion.
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Finally, the chapter will be concluded by outlining the most important findings and
future work suggestions.

2 Concepts and Applications

The role of a feature detector is to identify the interest points (i.e. regions of interest)
while a feature descriptor is responsible for computing the feature vector describing
these interest points (regions). The matching process determines correspondence
between the computed descriptors. A clear example is the SIFT algorithm proposed
by David Lowe 2004, where keypoints are extracted by the SIFT detector and the
SIFT descriptor computes descriptors of the detected keypoints. It is a common
practice to use SIFT detector and SIFT descriptor independently [10]. Keypoints can
be extracted without descriptors (using SIFT detector only) or SIFT descriptor can
be used to describe custom keypoints. Each detector (e.g. SIFT) is used together
with its own corresponding descriptor. If the detector does not have a corresponding
descriptor (e.g. STAR detector), a convenient feature descriptor is chosen according
to the application as will be explained in Sect. 4.

Image registration is the process of determining a geometrical transformation that
aligns points or pixels in one image with the corresponding points in the other image
having the same scene [6]. A successful image registration is mandatory for image
fusion and data integration. Generally, the main steps of image registration process
are: Feature identification, feature matching, spatial transformation, and finally the
resampling step as illustrated in Fig. 1. The feature identification includes the detec-
tion of the required features like keypoints or GCPs from the input images. Once
the features are extracted from images, the matching process starts by comparing
the feature descriptors based on the detected keypoints in order to get the set of
correspondence between these descriptors.

Mean squared differences like Euclidean distance or Root Mean Squared Error
(RMSE), and mutual information are examples of these similarity functions or

Fig. 1 The main steps
involved in classical image
registration

Feature Extraction

Feature Matching

Spatial Transformation 

Image Resampling / Blending
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metrics. This step is followed by finding a geometrical transformation model that
aligns the source image on the reference one which remains intact using the set of
similarity points or matches between them.

The transformation model estimation is done based on this list of tie points.
Different methods are existing for performing such transformations and can be clas-
sified as rigid and non-rigid image transformations [11]. In rigid transformations, the
shape and the size of the objects do not change while they do change in non-rigid
transformations like affine and similarity transformations. Based on the transforma-
tion model, the resampling techniques like linear interpolation are used to resize and
composite the final registered image.

Good features extracted from images are supposed to be robust against rotation,
scaling, illumination changes or invariant against any geometric changes. In [5], an
evaluation of some invariant local features on satellite images is introduced with
a focus on both the detection and the matching phases. In computer vision and
image processing applications, these two processes are mandatory when manipu-
lating images taken from the same or different sensors, different viewpoints or at
different times.

There are different registration methods according to the type of features extracted
from the input images and also on the transformation model that maps the extracted
points from the input images. The registration is done once this mapping is determined
and for some applications the two input images are combined together in one version
by summing the intensity values in the two images. In general, image registration
can be classified based on the applications as follows:

1. Multi-modal registration: where complementary information for multi-sensor
images are integrated [12]. Images of the same scene are acquired by different
sensors. The aim is to integrate the information obtained from different source
streams to gain more complex and detailed scene representation. Examples of
applications are fusion of remotely sensed information from sensors with dif-
ferent characteristics like panchromatic images, color/multispectral images with
better spectral resolution, or radar images independent of cloud cover and solar
illumination. Applications like land use or change detection make use of such
type of registration where remote sensing and Geographic Information system
(GIS) are combined together [13].

2. Multi-view registration: Images of the same scene are acquired from different
view-points. The aim is to gain a larger 2D view or a 3D representation of the
scanned scene. Examples of applications: remote sensing based mosaicking of
images of the surveyed area and shape recovery from stereo cameras.

3. Temporal registration: Images of the same scene are acquired at different times,
often on regular basis, and possibly under different conditions. The aim is to
evaluate changes in the scene which appeared between the consecutive images
acquisitions. Examples of applications: Remote sensing monitoring of global land
usage, landscape planning, automatic change detection for security applications,
detection for security monitoring, motion tracking, and medical imaging based
monitoring of the healing therapy and monitoring of the tumor evolution.
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Fig. 2 Passive (top) and active (down) sensing processes (Source http://en.wikipedia.org/wiki/
Remote_sensing#mediaviewer/File:Remote_Sensing_Illustration.jpg)

4. Scene to model registration: Images of a scene and a model of the scene are
registered. The model can be a computer representation of the scene, for instance
maps or digital elevation models (DEM) in GIS, another scene with similar
content. The aim is to localize the acquired image in the scene/model and/or
to compare them. Among the many different types of satellite images, two are
mainly involved in our image analysis study that is radar and optical images
(i.e. active and passive sensing respectively as in Fig. 2. In general, there are
two categories of remote sensing systems: passive and active sensors. Passive
sensors collect natural radiant reflected from targeted objects while active sensors
transmit a signal then receive the reflected response. These two types of images
provide the user with different and complementing information in order to achieve
a better understanding of the analysed scene [14].

There are many applications for image registration in medical imaging and remote
sensing and satellite imagery as well. In this work, we focus on satellite image

http://en.wikipedia.org/wiki/Remote_sensing#mediaviewer/File:Remote_Sensing_Illustration.jpg
http://en.wikipedia.org/wiki/Remote_sensing#mediaviewer/File:Remote_Sensing_Illustration.jpg


Satellite Image Matching and Registration … 141

registration and their applications on optical and radar images. These images are
influenced by a number of effects based on the carrier frequency of the electromag-
netic waves. It is well known that optical sensors are hindered by clouds to obtain
information on the observed objects on Earth. Even the shadows of the clouds or
the night transit over an area influence the interpretability of the imagery. On the
other hand, Synthetic-Aperture Radar (SAR) suffers from severe terrain induced
geometric distortions based on its side-looking geometry (layover, foreshortening,
and shadow). To overcome these influences it is possible for example to combine
different images acquired by the same or different instrument for getting one single
image having information more than we get from a single sensor.

There are many available satellites with sensors in different formats, spectral
bands and different ground resolution depending on the mission of each sensor.
Famous satellite systems include: LANDSAT, SPOT, IKONOS, TerraSAR-X and
RADARSAT. In our registration framework, we have tested different optical and
radar data from TerrSAR-X, RapidEye, Pléiades, IKONOS-2, ASTER and TET-1
satellite sensors. More details about the tested images of this work in Sect. 4.

3 Image Registration

As illustrated in the previous section, Image registration is about to find the corre-
sponding pixels or points between two or more images taken from same or different
sensors or at different times or from different viewpoints [15]. In our work, we focus
on registering multi-sensor data where images are taken from different sensors (opti-
cal and radar). The other two scenarios (multi-view and multi-temporal) are also
considered. This section discusses in details the main steps involved in the regis-
tration process: feature extraction, feature matching, geometric transformation, and
resampling phase. Then the proposed Algorithm is presented with more details.

3.1 Feature Extraction

The task of finding correspondences between two images of the same scene or object
is part of many computer vision applications like object recognition, image indexing,
structure from motion and visual localization—to name a few. In most images there
are regions/points that can be detected with high repeatability since they possess
some distinguishing, invariant and stable property. These regions/points represent
the image local features. A local feature is an image pattern which differs from its
immediate neighborhood. It is usually associated with a change of an image property
or several properties simultaneously, although it is not necessarily localized exactly
on this change. In the following subsections, some of the most recent local feature
detectors found in literature will be briefly discussed. An evaluation of local feature
detectors and descriptors is found in [13, 16].
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Fig. 3 The main steps of the SIFT feature detector and descriptor [17]

3.1.1 SIFT

SIFT (Scale Invariant Feature Transform) has been presented by Lowe in the year
2004 [17]. It has four major steps: scale-space extrema detection, keypoint localiza-
tion, orientation assignment and finally building the keypoint descriptor. In the first
step, points of interest are identified by scanning both the location and the scale of
the image. The difference of Gaussian (DoG) is used to perform this step and then,
the keypoint candidates are localized to sub-pixel accuracy.

Then the orientation is assigned to each keypoint in local image gradient directions
to obtain invariance to rotation. In the last step a 128-keypoint descriptor or feature
vector is built and ready for the matching process. SIFT gives good performance
but still have some limitations against strong illumination changes and big rotation.
Figure 3 shows the main steps of the SIFT algorithm.

3.1.2 SURF

SURF (Speeded-Up Robust Features) is a local invariant Interest point or blob detec-
tor [18]. It is partly inspired by the SIFT descriptor and is used too in static scene
matching and retrieval. It is invariant to most of the image transformations like scale
and illumination changes in addition to small changes in viewpoint. It uses Integral
Images or an intermediate representation for the image and contains the sum of gray
scale pixel values of image.

Then a Hessian-based interest point localization is obtained using Laplacian of
Gaussian of the image. SURF is good at handling serious blurring and image rotation.
However, it is poor at handling viewpoint and illumination changes. Figure 4 shows
the main steps of the SURF algorithm.
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Fig. 4 The main steps of the SURF feature detector and descriptor [18]
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3.1.3 Harris

Harris is a combined corner and edge detector based on the local autocorrelation
function [19]. It does not depend on rotation or shift or affine change of intensity. It
extends the principle of Moravec’s corner detector by considering the local autocor-
relation energy [20].

Corners are usually good features to match especially with viewpoint changes.
Figure 5 shows the main steps of the Harris corner and edge detector.

3.1.4 Star

Star Feature Detector is derived from CenSurE (Center Surrounded Extrema) detec-
tor [10, 21]. While CenSurE uses polygons such as Square, Hexagon and Octagons
as a more computable alternative to circle, Star mimics the circle with 2 overlapping
squares: one upright and one 45-degrees rotated. CenSurE determines large-scale
features at all scales, and select the extrema across scale and location. It uses simpli-
fied bi-level kernels as center-surround filters. It focuses on finding kernels that are
rotationally invariant. Figure 6 shows the main steps of the Star detector.

3.1.5 FAST

FAST (Features from Accelerated Segment Test) is a corner detection method [22].
Its importance lies in its computational efficiency as it is faster than many famous
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Fig. 6 The main steps of the Star corner detector (In our work, Star has been used as a feature
detector without computing its own descriptor (instead, SIFT descriptor is used in the description
phase))
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feature extraction methods (e.g. DoG, SIFT, Harris). It uses a Bresenham circle of
radius 3 to find out whether a selected point is a corner. Each pixel in the circle is
given a number from 1 to 16 clockwise. If a set of contiguous pixels inside the circle
is brighter or darker than the candidate pixel then it is classified as a corner. FAST is
considered as a high quality feature detector but still not robust to noise and depend
on a threshold. Figure 7 shows the main steps of the FAST algorithm.

3.1.6 BRISK

BRISK (Binary Robust Invariant Scalable Keypoints) depends on easily configurable
circular sampling pattern from which it computes brightness comparisons to form
a binary descriptor string [23]. The authors claim it to be faster than SIFT and
SURF. A further investigation is required to explore alternatives to the search of
saliency scores scale space maxima to obtain higher repeatability while keeping
speed. Figure 8 shows the algorithm main steps.

3.1.7 ORB

ORB (Oriented BRIEF-Binary Robust Independent Elementary Features) is a local
feature detector and descriptor based on binary strings [10, 24]. It depends on a
relatively small number of intensity difference tests to represent a patch of the image
as a binary string. The construction and matching of this local feature is fast and
performs well as long as invariant to large in-place rotations is not required. ORB
investigates the variance under orientation which was critical in its construction that
apparently improved the performance in nearest-neighbor applications. One of the
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issues that was not properly addressed is scale invariance. Although they used a
pyramid scheme, they did not explore per keypoint scale from depth cues or tuning
the number of octaves [25]. Figure 9 shows the ORB main steps. For further details
the reader is urged to refer to [25].

3.1.8 GFTT

GFTT (Good Features to Track) extracts the most prominent corners in the image
as described in [26] where the corner quality measure at each pixel is calculated.
Then a non-maximum suppression is applied. The corners with quality less than a
certain threshold are rejected and the remaining corners are sorted by the quality
measure in the descending order. Finally, each corner for which there is a stronger
corner at a distance less than a threshold is thrown away. Their method shows that
features with good texture properties can be found by optimizing the tracker accuracy.
The GFTT are exactly those features that make the tracker work best. Two image
motion models were found to be better than using one. Translation model gave more
reliable results when the interframe camera translation was small. However, the affine
model changes were mandatory to compare distant frames to determine dissimilarity.
Figure 10 shows the GFTT main steps.

3.1.9 MSER

MSER (Maximally Stable Extremal Regions) is similar to SIFT (blob detection) as
it extracts the co-variant regions from an image [27]. It was proposed to find cor-
respondences between images from different viewpoints. Extremal regions are used
which possess some important properties. The set is closed under continuous trans-
formations of image coordinates and monotonic transformation of image intensities.
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MSER has near linear complexity and practically fast to detect affinely invariant sta-
ble subset of extremal regions. Figure 11 shows, informally, the MSER main steps.

3.2 Feature Matching

Image similarity measures estimate the amount of correspondence between the image
pairs or what is known as feature descriptors. Here, we give an overview on some of
the most used similarity measures in the area of remote sensing:

3.2.1 Root Mean Squared Error (RMSE)

The correspondence can be measured as the sum-squared difference between the
intensities of overlapping pixels to evaluate a given registration. This can be expressed
as an error function where a value of zero represents a perfect match [28–31] see the
below equation:

RMSE =
√√√√ 1

MN

M∑

i=1

N∑

j=1

(x (i, j) − y (i, j))2 (1)

where M and N are the image dimensions, x; y are the point list from reference and
transformed image.

3.2.2 Peak Signal to Noise Ratio (PSNR)

It is a ratio of maximum possible power of signal to power of corrupting noise that
affects the fidelity of representation. Its range is wide so it is expressed as logarithmic
scale. Maximum value of PSNR indicates good match between the two images; can
be expressed as [30].

PSNR = 10 log10
(2n − 1)2

MSE
(2)
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3.2.3 Normalized Cross Correlation (NCC)

NCC is a common similarity measure [11] and can be mathematically defined as:

NCC(A, B) = 1

N

∑

x,y

(A − μA) (B − μB)

σAσB
(3)

where N denotes the total number of pixels in image A and B, μA, μB are the mean
of image A and B in order, and σA, σB denote the standard deviation of images A;B
in order.

3.2.4 Mutual Information (MI)

Mutual information is a reliable and most used method based on the gray levels to
measure the similarity metric between two images [30–32]. It measures the statistic
correlations between two images based on the Shannon entropy. It is computed for
an image using the distribution of the gray values within the image. If each pixel
in an image is viewed as a random event, the information contained in the image
can be measured by Shannon entropy. It can be viewed as a measure of uncertainty
or how much information an image contains [32]. For two images A and B, mutual
information MI (A, B) is computed as follows [33]:

MI(A, B) = H(A) + H(B) − H(A, B) (4)

The interpretation of Eq. (4) form is that measures the distance between the joint
distribution of image pixel values and the joint distribution in case of independence
of the images A and B. H(A) and H(B) are the entropies of A and B respectively, and
H(A, B) is the joint entropy of A with B. H(A) and H(A, B) can be calculated as:

H(A) = −
La∑

i=1

Pi(a) − log Pi(a) (5)

H(A, B) =
La∑

i=1

Lb∑

j=1

Pi,j (a, b) log Pi,j (a, b) (6)

where La and Lb are the number of different colors in images A and B respectively,
Pi(a) is the probability of occurrence of color value i in image A, and Pij(a; b) is the
probability of occurrence of color pair i and j in images A and B.
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3.2.5 Structural Similarity Index Matrix (SSIM)

SSIM is a quality measure of one of the image being compared with another image
having perfect quality. It is an improved version of the universal image quality index
(UIQI). The mean SSIM is equal to one when two images are same. Unlike RMSE
and PSNR, SSIM does not estimate the perceived errors. Conversely, SSIM con-
siders image degradation as perceived change in structural data having strong inter-
dependencies (important information about the structure of the object) specifically
when they are spatially close. SSIM is calculated as follows:

SSIM = (2xy + C1) (2σxy + C2)(
σx2 + σy2 + C2

) (
x̄2 + ȳ2

) + C1
(7)

where x(i, j) and y(i, j) are the reference and transformed images respectively, x̄, ȳ
are the mean values for reference and sensed images respectively, σx2 and σy2 are
the variance of x and y images, and C1 and C2 are the constants defined as:

C1 = (k ∗
1 L)2 , C2 = (k ∗

2 L)2 (8)

where k1 = 0:01 and k2 = 0:03 and L = 2n–1

3.2.6 Ratio Image Uniformity (RIU)

Woods et al. proposed the ratio image uniformity (RIU) as the similarity measure in
[34] for intra-modality alignment of medical images. The ration image uniformity is
calculated as:

RIU =
√

1
N

∑
x

(
R(x) − R̄

)2

R̄
(9)

where R̄ is the mean value of R(x), R(x) = A(x)/B(x)
The registration strategy assumes that intensity ratio is maximally uniform across

voxels if the two images are accurately registered. If σ is the standard deviation of
R(x), and R̄ is the mean value of R(x), this strategy uses σ /R as the similarity measure
to evaluate how well the two images are registered.

3.2.7 Minkowski Similarity Distance

It is defined based on the Lp norm as follows:

Dp(S, R) = (

N−1∑

i=0

(Si − Ri)
p)(1/p) (10)
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where Dp(S, R) is the distance between the two feature vectors S = S1, S2, ......SN−1,

R = R1, R2, ......RN−1 representing the descriptors of the extracted keypoints from
the input images [5]. Another distance measure is FLANN. It stands for Fast Library
for Approximate Nearest Neighbors. FLANN matcher contains a collection of algo-
rithms optimized for fast nearest neighbor search in large datasets and for high
dimensional features. It works faster than other matchers [35].

3.3 Geometric Transformations

Pre-processing operations, sometimes known as image restoration and rectification.
They are intended to correct specific radiometric and geometric distortions of data.
Radiometric corrections may be necessary due to variations in scene illumination
and viewing geometry, atmospheric conditions, and sensor noise and response. Each
of these will vary depending on the specific sensor and platform used to acquire the
data and the conditions during data acquisition. Also, it may be desirable to convert
and/or calibrate the data to known (absolute) radiation or reflectance units to facilitate
comparison between data [36]. Variations in illumination and viewing geometry
between images (for optical sensors) can be corrected by modelling the geometric
relationship and distance between the areas of the Earth’s surface imaged, the sun
and the sensor. This is often required to compare more readily images collected
by different sensors at different dates or times, or to mosaic multiple images from
a single sensor while maintaining uniform illumination conditions from scene to
scene [36].

Scattering of radiation occurs as it passes through and interacts with the
atmosphere. This scattering may reduce, or attenuate, some of the energy illumi-
nating the surface. In addition, the atmosphere will further attenuate the signal prop-
agating from the target to the sensor. Various methods of atmospheric correction can
be applied ranging from detailed modelling of the atmospheric conditions during
data acquisition, to simple calculations based solely on the image data.

All remote sensing imagery is inherently subject to geometric distortions (Fig. 12).
These distortions may be due to several factors, including the perspective of the sen-
sor optics, the motion of the scanning system, the motion of the platform, the platform
altitude, attitude, and velocity, the terrain relief, and the curvature and rotation of
the Earth. Geometric corrections are intended to compensate for these distortions
so that the geometric representation of the imagery will be as close as possible
to the real world. Many of these variations are systematic or predictable in nature
and can be accounted for by accurate modelling of the sensor and platform motion
and the geometric relationship of the platform with the Earth. Other unsystematic
or random errors cannot be modelled and corrected in this way. Therefore, geo-
metric registration of the imagery to a known ground coordinate system must be
performed [36].

The geometric registration process involves identifying the image coordinates (i.e.
row, column) of several clearly discernible points, (GCPs), in the distorted image
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Fig. 12 Image-to-map
registration: A GCPs in the
distorted image. B True
ground coordinates
measured from a map
(Source Canada Center for
Remote Sensing. [Online]
http://crs.nrcan.gc.ca)

(A – A1 to A4), and matching them to their true positions in ground coordinates
(e.g. latitude, longitude). The true ground coordinates are typically measured from a
map (B – B1 to B4). This is known as image-to-map registration. Once several well-
distributed GCP pairs have been identified, the coordinate information is processed
by the computer to determine the proper transformation equations to apply to the
original (row and column) image coordinates to map them into their new ground
coordinates. Geometric registration may be also performed by registering one (or
more) images to another image, instead of to geographic coordinates. This is called
image-to-image registration and is often done prior to performing various image
transformation procedures or for multi-temporal image comparison.

The transformation model determines which kind of geometrical transformation
can be applied to the scene image to reach the model. This also controls which
geometrical properties (e.g. size, shape, position, orientation, etc.) are preserved
through the process [36].

Common models include rigid transform, which allows translations and rota-
tions, similarity transform, which also admits scaling, and affine transformation,
which can also represent shearing [37]. Figure 13 outlines the relation between the
different transformation models. At the other end of the spectrum there are non-rigid
(also called elastic) transformations, such as B-spline and thin-plate splines trans-
formations, able to represent local deformations (warping) using hundreds or even

Original 
Image Translate, rotate, 

scale

Shear and distort 
aspect ratio

Projection 
with a finite 

Similarity 
Transform

Affine 
Transform

Perspective 
Transform 

Fig. 13 Relation between different rigid transformations [37]

http://crs.nrcan.gc.ca
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thousands of parameters. The following subsections briefly describe examples few
transformation models.

3.3.1 Isometry Transformation

Isometry transform maps elements to the same or another metric space such that the
distance between the image elements in the new metric space is equal to the distance
between the elements in the original metric space. It considers only rotation and
translation transformation and can be written in matrix form as [37]:

⎛

⎝
x

′

y
′

1

⎞

⎠ =
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⎝
cos(θ) − sin(θ) dx
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1

⎞

⎠

where (x′, y′) is the transformed coordinate of (x, y) , dx and dy are x-axis and y-
axis translation respectively. The transformation matrix has the following properties:
An orthogonal matrix, Euclidean distance is preserved, as three parameters; two for
translation, and one for rotation

3.3.2 Similarity Transformation

This transformation considers rotation, translation and scaling transformation and
can be written in matrix form as [37]:
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where (x′, y′) is the transformed coordinate of (x, y), dx and dy are x-axis and y-axis
translation respectively, S and s is a scale factor. Minimum of two corresponding
points in the images are required to determine the 4 parameters. Angles are pre-
served under the similarity transformation and it’s useful when registering distant
orthographic images of flat scenes. The transformation matrix has the following prop-
erties: An orthogonal matrix, similarity ratio (the ratio of two lengths) is preserved, it
has four degrees of freedom; two for translation, one for rotation, and one for scaling.

3.3.3 Affine Transformation

An affine transform represents distortion of the aspect ratio and shearing of the image
[37]. It is a combination between linear transformation and translation. It’s considered
as a simple transformation method, and also known as RST (Rotation, Scaling, and
Translation). Although it is faster than the other transformations but it has some
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limitations and less accuracy than the polynomial model for example. Parallel lines
remain parallel and straight lines remain straight. Affine transformation is represented
in matrix form using homogeneous coordinates (with six unknown parameters) as:

⎛

⎝
x

′

y
′

1

⎞

⎠ =
⎛

⎝
a11 a12 tx
a21 a22 ty
0 0 1

⎞

⎠

⎛

⎝
x
y
1

⎞

⎠

where x
′ = x + tx and y

′ = y + ty. In affine transformations, the relation between
two corresponding points (x, y) and (X, Y) could be formulated as [38]:

x = m1 + m2X + m3Y

y = n1 + n2X + n3Y (11)

where m1−3 and n1−3 are the transformation coefficients. The transformation matrix
has the following properties: Ratio of lengths of parallel line segments is preserved,
it has six unknown; two for translation, one for rotation, one for scaling, one for
scaling direction, and one for scaling ratio

3.3.4 Polynomial Transformation

The first order polynomial warping includes XY interaction term which allows image
shear as [38]:

x = m1 + m2X + m3Y + m4XY

y = n1 + n2X + n3Y + n4XY (12)

where m1−4 and n1−4 are the transformation coefficients.

3.3.5 Projective Transformation

The perspective transform represents a full eight degrees of freedom in the homog-
raphy. The perspective transform preserve the straightness of lines and planarity
of surfaces, and the curved transformations, which do not. The projective trans-
formations, which have the form, can be represented in homogeneous coordinates
by [37]:
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Fig. 14 Nearest Neighbour
Resampling (Source Canada
Center for Remote
Sensing. [Online] http://ccrs.
nrcan.gc.ca)

where (x′, y′) is the transformed coordinate of (x, y). The transformation matrix has
the following properties: Cross ratio preserved and it has 9 unknown parameters.

After getting the set of inliers, the warping phase starts using different non-rigid
geometric transformations including affine and polynomial transformation models.
We have also used a global homography transformation model as a warping method
with a linear blending resampling technique. In order to evaluate local feature detec-
tors against different types of transformations, a global homography transformation
is used. An input image (S) is transformed to a new image (N) by applying the
following transformation [39]:

N(x′, y′) = s

(
h11x + h12y + h13

h31x + h32y + h33
,

h21x + h22y + h23

h31x + h32y + h33

)
(13)

where h is a 3 × 3 transformation matrix. The homography matrix values are ran-
domly generated within a uniform distribution.

3.4 Image Resampling

In order to actually geometrically correct the original distorted image, a procedure
called resampling is used to determine the digital values to place in the new pixel
locations of the corrected output image. The resampling process calculates the new
pixel values from the original digital pixel values in the uncorrected image. There
are three common methods for resampling: nearest neighbour, bilinear interpolation,
and cubic convolution.

Nearest-neighbor interpolation is the simplest but the least accurate interpolation
methods (Fig. 14). It uses the digital value from the pixel in the original image which
is nearest to the new pixel location in the corrected image. This is the simplest
method and does not alter the original values, but may result in some pixel values

http://ccrs.nrcan.gc.ca
http://ccrs.nrcan.gc.ca
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Fig. 15 Bilinear Interpolation Resampling (left), Cubic Convolution Resampling (right) (Source
Canada Center for Remote Sensing. [Online] http://ccrs.nrcan.gc.ca)

being duplicated while others are lost. This method also tends to result in a disjointed
or blocky image appearance.

Bilinear interpolation resampling takes a weighted average of four pixels in the
original image nearest to the new pixel location (Fig. 15, left). The averaging process
alters the original pixel values and creates entirely new digital values in the output
image. This may be undesirable if further processing and analysis, such as classifi-
cation based on spectral response, is to be done. If this is the case, resampling may
best be done after the classification process [36].

Cubic convolution resampling goes even further to calculate a distance weighted
average of a block of sixteen pixels from the original image which surround the
new output pixel location (Fig. 15, right). As with bilinear interpolation, this method
results in completely new pixel values. However, these two methods both produce
images which have a much sharper appearance and avoid the blocky appearance of
the nearest neighbour method. (http://ccrs.nrcan.gc.ca). As suggested in [39], pre-
processing steps depend on the choice that is made for a suitable fusion level. In case
of pixel based image fusion in fact, the geocoding is of vital importance and such
details as geometric model, GCPs, DEM and resampling method need to be taken
into consideration.

Trilinear Interpolation: it assumes the intensity varies linearly with the distance
between the grid points along each direction. It considers all the contributions to
interpolation point from the eight neighboring pixels. The distances are different
between interpolation point and each of neighboring voxels. Therefore, the contri-
bution (weight) from each voxel is different. Trilinear interpolation sums up the
contribution (weight) from each neighboring voxel as the intensity value of interpo-
lation point [36].

Partial Volume Interpolation: constructs the joint histogram without introducing
new intensity values. Rather than interpolating the intensity value in the reference
space, partial volume interpolation distributes the contribution from image intensity

http://ccrs.nrcan.gc.ca
http://ccrs.nrcan.gc.ca
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S(s) over the neighboring eight voxels within the reference space. Eight entries of
the joint histogram are updated by adding the corresponding weight at the same time.
The calculation of weights from eight voxels is identical to the trilinear interpolation.

Triangulation Warping: A triangulation of set of points P= {p1,...,pn} is a maximal
planar subdivision with vertex set P. Delaunay triangulation warping fits triangles to
the irregularly spaced GCPs and interpolates values to the output grid.

In order to perform the resampling step between the sensed and the reference
images, the following methods have been tested: Nearest Neighbor, linear/bilinear,
and cubic interpolation. The nearest neighbor method uses the nearest pixel without
any interpolation to create the warped image while the bilinear one performs a linear
interpolation using four pixels to resample the warped image. In the cubic inter-
polation, 16 pixels (4 × 4) are used to approximate the since function using cubic
polynomials to resample the image. It takes usually longer time compared to the lin-
ear or the linear methods so it is used when the speed is not the issue. It’s smoother
and less in distortion than other methods. In short, the registration process depends
on the quality or the tie points and on the type of the transformation model used in
the warping phase in addition to the resampling method.

3.5 The Proposed Registration Framework

The proposed registration framework (Fig. 16) starts by applying a speckle noise
removal on the TerraSAR-X radar images. Such step increases the quality of SAR
and active radar images against any possible degradation. This includes applying
different adaptive filters like Lee or Frost (available in GIS software like ENVI with
the possibility to change or use different noise models (multiplicative or additive).
Also, optical images may need a pre-processing step in order to enhance the edges
and lead to more accurate detection.

The next step is to detect and extract the GCPs from both optical and radar images.
The detailed procedure for extracting and matching the GCPs from the input images
is summarized as follows [38]:

(1) Extract the GCPs from the input images and compute their descriptors (CP1 and
CP2 if there are two input images). If the number of the detected GCPs exceeds
a predefined number of the key points, then the detected GCPs are filtered by
sorting them according to their response.

(2) Once the GCP descriptors are built, the similarity measurements can be used to
measure how the two sets of CPs are similar. In this step, the nearest neighbor
is considered as the GCP with minimum Euclidean distance for the invariant
descriptor. Different distance similarity measures have been tested in the exper-
iments including Euclidean distance, Manhattan, and FLANN distance mea-
sures).

(3) The outlier removal is done using RANSAC (RANdom SAmple consensus) to
exclude the inconsistent matches and help getting the list of tie points repre-



156 M. Tahoun et al.

Optical Image

Radar Image
Speckle 
Noise 

Reduction

Edge 
Sharpening 
/ Enhancing

Applying 
Transformation 

Model

Resampling / 
BlendingRegistered Image

Keypoint 
Extraction and 

Filtering 

Matching 
Keypoint 

Descriptors

Final Set of 
Ground Control 
Points (GCPs)

Fig. 16 The proposed registration scheme of optical and radar images

senting the actual matches between the two input images (known as the set of
inliers).

Once we get the set of inliers, a suitable transformation model is chosen to map the
points of the sensed image to the corresponding ones in the reference images (or
vice versa). The resampling or the interpolation method is then chosen to warp the
sensed image on the reference one or bring the geometry of one image to the other
in order to get the registered version. Although it depends on the application, but the
implemented system allows the user to get a mosaic version to subjectively judge
how accurate is the registration process?.

The experiments have been also applied on same sensor registration which makes
it available to register optical images together and radar images too as will be
explained in the next section.

4 Experiments and Discussion

In this section, variety of experiments have been run in order to enhance the entire
registration process. This include experiments on the same and different satellite
sensors. In our case, we have tested RapidEye, Pléiades, ASTER, IKONOS-2, and
TET-1 optical images in addition to and TerraSAR-X radar images covering differ-
ent areas in Egypt, Germany and Australia (Fig. 17 shows different samples from
the tested images). They are available in different spatial and ground resolution as
follows [40]:
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TerraSAR-X radar band
Date: 25.07.2010 Date: 24.09.2010 Date: 12.10.2012

RapidEye, band #3 Pléiades , band #4 

ASTER band#11,
Date: 2.03.2009 

IKONOS-2, Red band  
Date: 08.07.2007 

TET-1 Bands LWIR (left), 
VISG(right), Date: 26.10.2014

Fig. 17 Samples from tested satellite images

TerraSAR-X. TerraSAR-X is a German Earth-observation satellite. Its primary pay-
load is an X-band radar sensor with a range of different modes of operation, allowing it
to record images with different swath widths, resolutions and polarisations. It offers
space-based observation capabilities that were not available before. TerraSAR-X
provides a value-added SAR data in the X-band, for research and development pur-
poses as well as scientific and commercial applications. One of the things that makes
TerraSAR-X stand out is its high spatial resolution using civilian radar systems. This
enables scientists to examine detailed ground features, for instance the differentiation
between different crops, in order to arrive at an improved classification of ground
use (Table 1).

RapidEye. On August 29, 2008, a cluster of five identical medium-resolution
satellites known as the RapidEye constellation was launched from Baikonur Cos-
modrome, Kazakhstan, and reached an orbital height of 630 km. The constellation
features 6.5-m resolution, 5-band multispectral (or blue, green, red, red edge and
near-infrared/NIR) imagery. With a wide footprint, five satellites and daily revis-
its, the RapidEye constellation has amassed more than 5 billion km2 of medium
resolution imagery to date (Table 1).

Pléiades. Launched at the end of 2011 from Guiana Space Centre, Kourou, French
Guiana, Pléiades 1 A was the first high resolution satellite in the Airbus Defense and
Space constellation. It is available in 50 cm (centimetre) resolution -panchromatic
and 2 m (meter) 4-band multispectral (i.e. blue, green, red and near-infrared/NIR)
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Table 1 Samples from RapidEye, Pléiades, and TerraSAR-X satellite data

Optical/radar
images

RapidEye Pléiades TerraSAR-X

Original
dimension

5000 × 5000 37197 × 30258 25468 ×
45065

Ground
resolution

5 m-5 spectral bands 0.5 m-4 spectral bands 2.75 m

Bands Blue 440–510 nm Blue 430–550 nm Active X-band
microwave

Green 520–590 nm Green 490–610 nm

Red 630–685 nm Red 600–720 nm

Red E. 690–730 nm NIR 750–950 nm

NIR 760–850 nm

products with the widest footprint of any high resolution satellites at 20 km (kilome-
tres) (Table 1).

TET-1. TET-1 (Technologie Erprobungs Träger-1) is a German technology demon-
stration microsatellite of DLR (German Aerospace Center) within its OOV (On-Orbit
Verification) program [41]. The overall objective is to provide industry and research
institutes with adequate means for the in-flight validation of space technology. Certain
programmatic rules were established for the space segment and the ground segment
to realize TET-1 as a low-cost mission within a relatively short timeframe under the
leadership of an industrial space company as prime contractor It covers areas with
high temperatures like forest fire [40].

ASTER. ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) satellite is one of the five state-of-the-art instrument sensor systems
on-board Terra, (December 1999), at Vandenberg Air Force Base, California, USA
[GeoImage2013]. ASTER is a high-resolution sensor produces stereo imagery for
creating detailed digital terrain models (DTMs). The resolution of images is between
15 to 90 m, and is used to create detailed maps of surface temperature of land,
reflectance, and elevation.

IKONOS-2. IKONOS is the first commercially available high resolution satellite
with imagery exceeding 1 m resolution (September, 1999) at Vandenberg Air Force
Base, California, USA. Its capabilities include capturing a 3.2 m multispectral, Near-
Infrared 0.82 m panchromatic resolution at Nadir with 681 orbit altitude. IKONOS-2
bands are: Panchromatic (1 m), blue, green, red, near IR (4 m multi-spectral).

Binary-valued feature descriptors (like BRIEF, BRISK and ORB) and also vector-
based feature descriptors (like SIFT and SURF) have been also tested. In general,
binary feature descriptors have some advantages over vector-based features in terms
of less computation time and they are compact to be stored, in addition that they are
efficient to be compared. Using SURF detection method, a comparison among these
descriptors as in Table 2. The results on RapidEye and TerraSAR-X have showed that
SIFT descriptor takes longer time to be built compared to other descriptors. Also,
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the matching time of SIFT descriptor using Euclidean distance is also greater than
other descriptors but it still giving the most robust and stable performance.

4.1 Same Sensor Experiments

Same sensors images are usually taken at different times or from different viewpoints.
In this part of the experiments we have tested both optical and radar images taken from
different viewpoints and at different times respectively. Figure 18 shows the inliers
between a RapidEye image and its transformed version using random homography.

A linear blending method is also tested in our work where Dyadic (two-input)
operator is the linear blend operator:

g (x) = (1 − α) f0 (x) + α f1 (x) (14)

where f0(x) and f1(x) are the two source images of the same type and size. By
varying α (weight of the first image) from 0 to 1 this operator can be used to perform
a temporal cross-disolve between the two images. The g(x) will generate an image,
we consider β = (1 − α) as the weight of the second image. Then we calculate the
weighted some of the two arrays (with 6 parameters, f0(x), f1(x), α, β, γ , and dst)
where dst = αf0(x) + βf1(x) + γ . (Figure 19 shows an example of linear blending
on Tet-1 images for an area near Canberra in Australia).

Table 3 presents a comparison between a full registration of two TET-1 bands
using ORB and SURF detectors. It shows that ORB runs faster than SURF as it finds
less number of keypoints that’s why it takes less extraction and pairwise matching
time. Here ORB and SURF detectors compute their own descriptors.

Fig. 18 The inliers between an original RapidEye image (left), and its transformed version using
random homography (right)
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Fig. 19 A linear blending between two TET-1 bands (VN and VG) and their blended version (right)
(α = 50)

Table 3 A Comparison between SURF and ORB detectors of registering two satellite bands from
TET-1 satellite images covering the area of Suez Canal University.)

Item/Descript. ORB SURF

TET-1 VISG band No. of extracted
keypoints

1530 7789

TET-1 VISN Band No. of extracted
keypoints

1530 3989

Extraction time (in
seconds)

0.323 2.459

Pairwise matches time
(in seconds)

0.212 0.539

Warping time (in
seconds)

0.005 0.005

Compositing time (in
seconds)

0.732 0.504

Total registration time
(in seconds)

1.628 4.105

In Fig. 20a, two TET-1 bands covering Suez Canal area in Egypt are registered
together using SURF detector. While in Fig. 20b, another same sensor registration
but for two TerraSAR-X images in one area in Dresden in Germany, using ORB
detector.

Figure 21 shows the general performance of different feature detectors on optical
and radar images. SIFT, SURF, FAST, GFTT, and Harris have a good performance on
different optical images while SIFT has performed better on radar images compared
to the other detectors. SIFT descriptor has been used as a default description method
in this evaluation.
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(b)

(a)

Fig. 20 Two examples of same sensor registration. a VISG (left) and VISN (right) TET-1 bands of
the Suez Canal Area in Egypt, and their registered version using SURF (right), b two TerraSAR-X
radar images covering an area in Dresden in Germany (top left and right), and their registered
version using ORB (down)

4.2 Different Sensor Experiments

Image distortions may occur due to several factors. They may include: the perspective
of the sensor optics, the motion of the scanning system or the platform, the platform
altitude, attitude, and velocity, the terrain relief, and the curvature and rotation of
the Earth [36]. Both of these effects should be corrected before further enhancement
or classification is performed. Both Optical and radar images have different illu-
mination characteristics. Furthermore, radar image suffer from speckle noise which
can lead to false GCPs detections. Speckle noise is generally found in satellite and
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Fig. 21 The general inliers ratios (%) of the tested detectors (using SIFT descriptor) on different
optical and radar satellite Images

medical images. They are usually degraded by noise during the acquisition and the
transmission processes. Any speckle noise removal aims to remove speckle noise by
retaining the important features within the images.

Methods used for noise reduction include adaptive and non-adaptive methods.
Adaptive speckle filters are supposed to be better as they preserve both edges and
details in high-texture areas like forests and urbans. On the other hand, non-adaptive
filters are simpler to implement, and requires less computational power. Lee filters are
used to smooth noisy (speckled) data that have an intensity related to the image scene
and have also an additive and/or multiplicative component. Lee filter is a standard
deviation based filter that filters data based on statistics calculated within individual
filter windows (e.g. 3 × 3 or 5 × 5). The main idea is that the pixels are filtered and
replaced by a value calculated using the surrounding pixels. Within each windows,
the local mean and variance are estimated. The filter outputs the local mean when
no signal is detected while it passes the original signal unchanged. Optical and radar
images are representing two different ways of sensing named active and passive sens-
ing. In this part of the experiments, we have tested multi-sensor registration between
RapidEye/Pléiades optical images and TerraSAR-X radar image of the area Berlin
Brandenburg airport area. On the other hand, optical images are also processed before
the feature detection process starts (if required). They have different radiometric cor-
relation than radar images. For this reason, applying edge detection methods aims to
overcome this problem. Edges do not require such radiometric correlations as they
are defined as a boundary between any two radiometric features. Canny edge detec-
tion has been applied on optical images in the multi-sensor framework. It detects
edges with noise suppressed at the same time. The steps for applying Canny edge
detection are: smooth the image by Gaussian convolution, highlight regions of the
image with high first spatial derivatives.
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Edges give rise to ridges in the gradient magnitude image, track along the top of
these ridges and sets to zero all pixels that are not actually on the ridge top so as to give
a thin line in the output. This process is known as non-maximal suppression. Then,
threshold edges in the images with the hysteresis process to eliminate false response.
Two thresholds t1and t2 are used where t1 > t2 as in Fig. 22a. Tracking can only
begin at a point on a ridge higher than t1. Tracking then continues in both directions
out from that point until the height of the ridge falls below t2. Also, in Fig. 22b,
an example of an original TerraSAR-X after apply the speckle noise removal. Then
the enhanced versions are used as sensed or reference images in the registration
process. The quality of the registration process between RapidEye and Pléiades with
the de-noising version from TerraSAR-X is better than using the original used band.

In Figs. 23 and 24, RapidEye and Pléiades optical images of the area of Berlin
Brandenburg airport are registered to TerraSAR-X radar image using SIFT detector
and global homography transformation.

A proposed filtering process to control and number of detected GCPs with the
aim to use only robust and strong keypoints. The aim of this study is to develop a
generalized scheme for the registration process based on the same or different sensors.
The registration algorithm presented in this chapter has the following characteristics:
an automatic detection and extraction of local features from images.

An evaluation of polynomial, affine, and global homography transformations with
different interpolation techniques on RapidEye and TerraSAR-X images is presented
in Fig. 25. This comparison has been done on different samples from RapidEye and
TerraSAR- X images covering the whole and some parts from Berlin Brandenburg
airport area. This will help to minimize the running time and hardware requirements
when manipulating such huge high resolution satellite images. Different feature
matching methods in order to enhance the overall performance of the extraction and
the matching phase.

Few transformation models and resampling techniques in order to warp and
composite the registered version with different subjective and objective evaluation,
furthermore, a synthesize test with other evaluation methods to measure how robust
the tested detectors to rotation, translation and scaling and their performance against
noise as well. A full registration process on optical and radar images from the same
and different sensors covering different viewpoints and times in addition to different
sensors. The quality of the registration process depends on how accurate is the corre-
spondence between pixels from the input images which emphasizes the importance
of the detection and the matching steps. Here, the role of both local feature detectors
and descriptors in the extraction and the matching of features from satellite images is
increasing and providing a faster and more accurate registration of remotely sensed
images.
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Fig. 22 Samples from the pre-processing steps on optical (Canny Edge detection as in (a)) and
radar (Lee speckle noise removal as in (b))
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Fig. 23 TerraSAR-X and Pléiades image registration using SIFT and global homography and linear
blending (SIFT detector is usually used with its own descriptor in the whole experiments)

5 Conclusions and Future Work

5.1 Conclusions

Satellite image matching and registration are two basic operations when manipulating
remote sensing data for many applications. In this chapter, different local feature
detectors and their corresponding descriptors have been tested and evaluated on
different optical and satellite images. It studies the behaviour of several invariant local
features on same and different sensor image registration. It aims to investigate and
enhance the whole registration process including: feature extraction and matching,
geometric transformations and image resampling. Furthermore, a full registration
between optical and radar images with variety of options is presented.

The suggested framework filters the detected keypoints (in case of high resolution
images) in order to reduce the running time during the extraction and the matching
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Fig. 24 Two RapidEye and TerraSAR-X Images (top left and right respectively), and their regis-
tered version using SIFT and global homography transformation

Fig. 25 A comparison among different geometric transformations with resampling methods on
three optical/radar samples

stages. RANSAC is used as an outlier removal for excluding the false matches and
get an enhanced tie points’ list between the sensed and the reference images. The
results showed a good performance of SIFT on TerraSAR-X radar images while
other detectors like SURF and Harris have a good performance on RapidEye/Pléiades
optical images. A comparison among different non-rigid geometric transformation
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methods is also presented. A full registration of Rapid-Eye and Pléiades optical, and
TerraSAR-X radar images is done using SIFT, and global homography transformation
with linear blending.

We aim to develop a robust and generalized scheme for registering both optical
and radar images for supporting multi-modal remote sensing applications. The role
of local features detectors and descriptors in this development is important as they
offer a faster and an automatic way of the matching and registration of same and
different sensor satellite imagery.

5.2 Future Work

Any future work ideas will depend on the ability of developing the extraction and
the matching processes for specific applications. The work presented here aims to
developing a generalized and robust scheme for registering single and multisensor
remote sensing data. Several enhancements to the automatic registration process can
be developed. This can include:

• Testing additional very high resolution optical and radar images for different appli-
cations using feature-based image extraction.

• Studying the role of domain experts in order to switch to intelligent and optimized
registration schemes. This can handle some of the current obstacles in some appli-
cations.

• Investigating a possible enhancement via combining correlation and feature-based
methods. This aims to benefit from the advantages of using the two approaches.
Dissimilarity measures can play a critical role in such combination together with
the estimation of the transformation model.

• Enhancing the registration of remote sensing data so that specific applications can
be done with a real-time processing and good performance.

• Feature-based precision corrections of image registration is still a challenge on
remote sensing data. Geolocation accuracy has to be refined by selecting optimal
or correct control points.

6 Key Terms and Definitions

Feature Extraction: Is the process of detecting features like control points or corner
or edges from images and building descriptors that contain such features.

Feature detector: identifies the interest points (i.e. regions of interest) within
images.

Feature descriptor: computes the feature vector describing the detected interest
points (regions)
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Target image: is the reference image or the image which does not change. Other
images are aligned or warped to it.

Source image: is the sensed image and it has to be aligned or warped on the
reference one.

Invariant Local Features: they are features within an images which are not chang-
ing against certain transformations and could be used as a robust image representa-
tions.

Image Matching: is the process of matching saved descriptors or feature vectors in
order to find how far the matched images are similar to each other. Recent advances
in image matching includes multimodal image matching where different kind of
features are extracted and tested for increasing the accuracy and reliability of the
matching.

Similarity Measurements: is a real-valued function that measures the similarity
between two feature vectors or descriptors. Euclidean distance, cross correlation,
mutual information are such examples of famous similarity measurements or match-
ers.

Image registration: is the process of determining a geometrical transformation
that aligns points or pixels in one image with the corresponding points in the other
image having the same scene.

Remote sensing: is the acquisition of information about objects without having
a direct contact with the objects. This term is mainly about the use of aerial sensor
technologies to detect and classify objects on Earth. Change detection, land use,
weather forecasting.

GIS: Geographic Information System: is the optimum tool to handle and integrate
large amount of spatially referenced data including remotely sensed data.

A spatial transformation: defines a geometric relationship between each point in
the input and output images.
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Redundancy Elimination in Video
Summarization

Hrishikesh Bhaumik, Siddhartha Bhattacharyya
and Susanta Chakraborty

Abstract Video summarization is a task which aims at presenting the contents of
a video to the user in a succinct manner so as to reduce the retrieval and browsing
time. At the same time sufficient coverage of the contents is to be ensured. A trade-
off between conciseness and coverage has to be reached as these properties are
conflicting to each other. Various feature descriptors have been developed which can
be used for redundancy removal in the spatial and temporal domains. This chapter
takes an insight into the various strategies for redundancy removal. A method for
intra-shot and inter-shot redundancy removal for static video summarization is also
presented. High values of precision and recall illustrate the efficacy of the proposed
method on a dataset consisting of videos with varied characteristics.

Keywords Video summarization · Redundancy removal · Feature descriptors ·
Metrics for video summary evaluation · Three-sigma rule

1 Introduction

The ever growing size of online video repositories like DailyMotion, YouTube,
MyVideo etc. have propelled the need for efficient Content Based Video Retrieval
Systems. This has augmented research in several related fields such as, feature extrac-
tion, similarity/dissimilarity measures, video segmentation (temporal and semantic),
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key-frame extraction, indexing, annotation, classification and retrieval of videos.
Video Summarization is a task which stands at the intersection of these research
issues. It reduces to a great extent the demand for computing resources in process-
ing the huge volumes of video data. The basic objective of the video summarization
process is to provide a concise, yet meaningful representation of the video to the user.
The efficacy of a video summarization system depends on maximizing two conflict-
ing features-coverage and succinctness. The important application areas of video
summarization include content-based video retrieval [1–3], semantic indexing [4],
Copied Video Detection (CVD) [5], video surveillance [6], generation of highlights
for sports [7–10], movies and drama [11–14], bandwidth-constrained video process-
ing applications [15] etc. The hierarchical levels of the composing units in a video
may consist of scenes, shots or frames depending on the granularity intended as
depicted in Fig. 1. The composing units share a temporal relationship with each
other. Distortion of semantic content occurs if these temporally sequenced units are
disordered. A video may be represented as V = u1

⊗
u2

⊗
u3 . . .

⊗
un, where ui is

the ith composing unit. Depending on the summarization approach used, a Boolean
decision is made for each constituent unit of the video as to whether it will be a part
of the generated summary or not. The mechanisms for selecting these units deter-
mine the efficacy of the approach used. Video summarization can also be viewed
as a task of amalgamating those video units which have the maximum entropy. The
system generated summary (SGS) consists of a subset of V (extraction type) or a
transformed set of the elements in V (abstraction type). In both cases the duration
of SGS is far smaller than V . Static video summarization falls under extraction type
where a set of key-frames are chosen to represent the video. This is particularly
helpful in bandwidth constrained scenarios, where the user needs to get an overview
of the contents of a video. On the other hand, a dynamic video summary may be
produced by coalescing together the units which have greater significance. In such
case, the summary generated may be either extraction based (e.g. sports highlights
package) where the chosen units have the same time-sequence in which they occur
in the original video or abstraction based (e.g. movie trailer) where the selected units
may be intermingled in a manner so as to produce a meaningful abstract of the given

Fig. 1 Hierarchical
representation of video units
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video. The challenges for designing a video summarization system arise from the
fact that the summary generated must be represented by the most significant com-
posing units. The ranking of video units according to significance is the crux of the
problem besetting researchers in this field. An equally considerable problem is to
remove redundancy without diminishing the coverage made by the representative
units. Elimination of visual redundancy is possible by extracting mid-level features
such as interest points. However, removal of semantic redundancy is a problem of a
different dimension. The task of semantic redundancy elimination is more complex
as it encompasses fields like object recognition, tracking, gesture/action identifica-
tion, event detection etc. to name a few. Hence, such a task requires extraction of
high level features. In this chapter, we focus on approaches taken for reduction of
visual redundancy.

The rest of the chapter is organized as follows. Section2 details the related works
in video summarization using redundancy elimination approaches. Section3 presents
an insight into the redundancy elimination problem in video summarization and why
it needs to be tackled. Section4 enumerates the role of interest points detection in
video summarization. This section also elaborates the various feature descriptors in
use. The proposedmethod is presented in Sect. 5. In Sect. 6 somewidely usedmetrics
for measuring the quality of summary is presented. The results of the summarization
process using the proposed method along with the details of the dataset used is
elaborated in Sect. 7. Some concluding remarks are presented in Sect. 8.

2 Survey of Related Works

Redundancy occurs due to the appearance of similar visual content at several points in
a video. This invariably increases the size of the resulting summary as it is formed by
coalescing together several video units taken from different points in the video. The
task of redundancy removal refers to the elimination of the repeated content which
conflicts with the objective of producing a concise summary. Several techniques for
redundancy removal have been devised over the years. Thesemethods can be broadly
categorized into two groups:

1. Techniques using feature descriptors
2. Other redundancy elimination techniques.

2.1 Methods of Redundancy Elimination
Using Feature Descriptors

Similarity in visual content may be aptly captured by using feature descriptors.
The feature descriptors capture medium-level semantic content. This is intermediate
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between low-level characteristics such as histogram comparisons [16, 17], statistical
differences [18, 19], standard deviation of pixel intensities [20], frame-to-frame
pixel intensity difference [21], gray level histograms of successive frames [17, 22],
statistical information like mutual and joint entropy [19], mean and variance of pixel
values, luminance etc. and high-level features like shapes of objects, edges in the
frames, optical flow [23], motion vectors [24], event modeling [25], etc. The high-
level featureswhich are connected to the content of a video such as scenes, objects etc.
are more natural to humans than the low-level features. As such the features which
capture points on the objects rather than the whole semantic meaning come under
mid-level features. The mid-level features are useful for detection and recognition
of objects which have consistent low-level characteristics. However, these mid-level
characteristics may not be useful for semantic analysis of the content in a video.
Feature descriptors have been used in several video analysis problems. These include
Shot Boundary Detection [18], Video Summarization [26], Object tracking [27] etc.

The various approaches related to Shot Boundary Detection aim at extracting fea-
ture descriptors from the time sequenced frames of a video. Depending on the feature
descriptors extracted from the frames the similarity between consecutive frames are
computed. The number of matched features is tracked to find abrupt discontinuities.
The points of discontinuities are the shot boundaries in the video sequence. Gradual
discontinuity patterns indicate smooth transition from one shot to another. These are
achieved through fades, wipes and dissolves. Apart from detecting shot boundaries,
the matched feature descriptors also serve as indicators to the amount of content
match between two shots. This aspect is exploited by researchers in tasks related
to summarization of a video. In [28], key-points are recognized for all the frames
of each shot in a video. A set of unique key-points is built for the shots. The set of
feature descriptors corresponding to the key-points are extracted. The representative
set of key-frames is constructed such that minimum number of frames covers the
entire pool of key-points. This ensures maximizing the coverage and minimizing the
redundancy [29]. In [30], an approach for static video summarization using semantic
information and video temporal segmentation is taken. The performance and robust-
ness of local descriptors are also evaluated as compared to global descriptors. The
work also investigates, as to whether descriptors using color information contribute
to better video summarization than those which do not use it. Also the importance of
temporal video segmentation is brought out in the work. The summarization process
uses a bag of visual words concept where the feature descriptors are used to describe
a frame. Visual word vectors are formed to cluster similar frames and finally fil-
ter out the representative frames. The performance of various feature detectors and
descriptors in terms of tracking speed and effectiveness were evaluated in [31]. The
work pertains to evaluation of these feature descriptors for face detection in real-time
videos. Change in structure for non-rigid objects, sudden changes in object motion
resulting in varied optical flow, change in manifestation of objects, occlusions in
the scene and camera motion are some of the inherent challenges which have to be
overcome for accurate tracking of objects. A proper amalgamation of these feature
descriptors may serve to improve the overall tracking precision. The work concludes
that a single feature detector may not provide enough accuracy for object tracking.
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An event detection system has been proposed in [32] for field sport videos. The sys-
tem runs two parallel threads for detecting text and scene in the video stream. The
output of a text detector is provided to a scoreboard analyzer for notifying the user of
an interesting event. The scene analyzer which runs parallel to the text analyzer takes
input from the scene detector and provides output to the event notification system to
tag the interesting sequences. Since the approach is designed for real-time videos,
the authors stress the need for using feature detectors which are inherently fast and
have an acceptable recognition rate.

In sports videos, the event is usually covered by a fixed set of cameras on stands.
As such the coverage is free from rotational variance. Also there are long shots and
close-ups which need to be distinguished. The algorithms designed for such purposes
may therefore ignore scale and rotation invariance strategies. The BRIEF descriptor
was chosen for this work as it satisfies these considerations and is computationally
efficient. BRIEF has been reported to be almost sixty times faster than SURF, while
ensuring an acceptable recognition rate [33]. In [34] an elaborate comparison of the
various descriptor extraction techniques is presented. The work reviews techniques
like SIFT, DIFT, DURF and DAISY in terms of speed and accuracy for real-time
visual concept classification. A number of high speed options have been presented
for each of the components of the Bag-of-Words approach. The experiments con-
sist of three phases i.e. descriptor extraction, word assignment to visual vocabulary
and classification. The outcome of this work can be extended for designing robust
methods for redundancy elimination based on visual concept classification.

Li [35] employsSIFTas the basis for computing content complexity and framedis-
similarity. This allows detection of video segments andmerging of the shots based on
similarity. Key-frames are then extracted from these merged shots. In [36], Compact
Composite Descriptors (CCDs) [37] and the visual word histogram are extracted for
each image. The object descriptor used is based on SURF. The CCD consists of four
descriptors i.e. the Color and Edge Directivity Descriptor (CEDD) [38], the Fuzzy
Color and TextureHistogram (FCTH) [39], the Brightness and TextureDirectionality
Histogram (BTDH) [40] and the Spatial Color Distribution Descriptor (SpCD) [41].
A Self-Growing and Self-OrganizedNeural Gas (SGONG) network is used for frame
clustering. The main aspect of this method is the ability to determine the appropriate
number of clusters. As in some of the other methods, the cluster centers are chosen
to generate the summary. Redundancy elimination is carried out in [42] by extracting
the SURF and GIST features from the representative frames obtained by generating
a Minimal Spanning Tree for each shot. The duplicate frames in the representative
set are eliminated using a threshold based on the three-sigma rule in accordance with
the number of descriptor matches for each pair of frames in the representative set. A
comparison of the summaries after redundancy elimination using SURF and GIST
are also elaborated.
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2.2 Other Methods of Redundancy Elimination

Apart from using mid-level features in the form of interest points for removal of
content duplication, several other methods have been proposed by the researchers.
A few of the important approaches are presented in this section.

The approaches using key-frame selection for static video summarization aim
to summarize the video by selecting a subset of frames from the original set of
decomposed frames. In order to remove redundancy from the set of selected frames,
clustering is applied on the set of selected key-frames by extracting features.One such
method is presented in [43] which includes a feature extraction phase required for
clustering. Duplicates from the selected key-frames are removed using a combination
of local and global information. In [44] an exploration framework for video summa-
rization is proposed. Key-frames are selected from each shot based on the method
described in [45]. The redundant frames are eliminated using a self-organizing map.
The redundancy eliminated set of key-frames are connected in a network structure
to allow the users to browse through the video collection. The power and simplicity
of color histograms have been exploited in several works for finding the similarity
between frames and thereby remove duplication. In [46] the main low-level feature
used is a color histogram. The given video is first segmented into shots and cluster-
ing is performed on the set of frames based on color histogram extracted from each
frame. The frame at the centroid of each cluster forms a part of the final key-frame
set. Although color histogram is a very elegant low-level feature, however, the com-
putational complexity involved for extraction and comparison is high as it represents
a vector of high dimensionality. In order to eliminate the components having lower
discrimination power, singular value decomposition (SVD) is used in [47]. In [48]
principal component analysis (PCA) is applied on the color histogram to reduce the
dimensionality of the feature vector. Delaunay clustering is used to group the frames
using the reduced feature vector. The center of each cluster represents a key-frame
of the storyboard. PCA has also been used in [49, 50] to reduce the elements in a
histogram. Further, in [49], Fuzzy C-means and frame difference measures are used
to detect shot boundaries in the video. The use of Fuzzy-ART and Fuzzy C-Means is
also proposed in [50] to extract shots from the given video by identifying the number
of clusters without any apriori information. A cost-benefit analysis of using PCA
has not yet been done.

Furini et al. proposed a tool called STIMO (Still and Moving Video Storyboard)
in [51] which was capable of generating still and moving storyboards on the fly. The
tool also enabled users to specify the length of summary and waiting time for sum-
mary generation. A clustering algorithm is executed on the HSV color descriptors
extracted from each of the frames. A representative frame is selected from each clus-
ter to produce the static storyboard. A similar approach is used to cluster the shots
and choose sequences from the clusters to produce a moving storyboard. A similar
approach is used in [52] where the K-means clustering algorithm is used on the HSV
color features. The final storyboard is formed by choosing a frame from each cluster.
In [53] an approach for summarization of news videos is discussed. The extracted
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key-frames are clustered together using affinity propagation. A vector space model
approach is then used to select shots having high information content. This ensures
that the key-frames having discrimination power are retained and visual redundancy
is removed. Liu et al. [54] and Ren et al. [55] are works which aim to summarize
the rushes video [56]. Liu et al. [54] implements a multi-stage clustering algorithm
to remove redundant shots. A value for frame significance is computed based on
change of content with time and spatial image salience. The most important parts
of the video are extracted based on the frame significance value. Using formal lan-
guage technique, [55] introduces a hierarchicalmodel to remove unimportant frames.
An adaptive clustering is used to remove redundancy while summarizing the rushes
video. In [57], a pair of clips is modeled as a weighted bipartite graph. The similarity
between the clips of a video is computed based on max-weighted bipartite match-
ing algorithm. The clustering process is based on affinity propagation algorithm and
serves to remove redundancy. In [58] a method for video object segmentation is pre-
sented which removes redundancy from the spatial, temporal and content domains.
A 3D graph-based algorithm is used to extract video objects. These objects are clus-
tered based on shapes using the K-means algorithm. Key objects are identified by
selecting objects from the clusters for obtaining intended summarization. A joint
method for shot boundary detection and key frame extraction is presented in [59]
wherein a method based on three probabilistic components is considered. These are
the prior of the key frames, the conditional probability of shot boundaries and the
conditional probability of each video frame. Gibbs sampling algorithm [60] is used
for key frame extraction and generation of the storyboard. This also ensures that
duplication is removed from the final summary.

3 Redundancy Elimination in Video Summarization

Duplication in video content occurs when the same scene or objects are covered by
a set of multiple cameras. This duplication of visual content may occur within a
given shot (intra-shot level) or between several shots (inter-shot level). Removal or
retention of such redundant content is contextual and depends on the genre of the
video. Duplication of content holds a different perspective for a sports video like
soccer than for news video or a documentary. It is still different for video surveil-
lance applications where only the frames containing some event or activity might
be of interest. This emphasizes the point that different approaches to redundancy
removal are required in different situations and the same algorithm may not work in
all cases. The basic objective of the video summarization task is to providemaximum
coverage of the contents while attempting to select the minimum number of video
units possible. It can be easily perceived that the two objectives are inversely propor-
tional and conflicting to each other. Redundancy elimination aims to achieve the later
objective without affecting the former. Hence it is seen as one of the most impor-
tant steps in the summarization task. Since redundancy removal is a phase where
an attempt is made to eliminate visually redundant units of the video, it assumes
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vital importance in bandwidth constrained scenarios where the user perception has
to be maximized with minimum amount of data transmission between the source
and destination. Redundancy elimination thus helps the user to get an insight into the
contents of the video in least possible time. This is also important for video indexing
applications where the non-redundant frames can be viewed as the features of the
video. This characterization helps to symbolize the video in order to facilitate content
based video retrieval. Visual redundancy is removed through the use of one or more
members from the family of feature descriptors like SIFT, SURF, DAISY, GIST,
BRIEF, ORB etc. (described in later sections). The interest points extracted by using
these feature descriptors serve as mid-level features necessary for finding the overlap
in visual content between the composing units of the video. Setting a threshold for
permitting overlap is another important task in this process. A stringent threshold
ensures that there is almost no overlap in visual content. This is sometimes necessary
for a storyboard representation of the video. For duplication removal in video skim-
ming applications, the amount of similarity between shots may be computed from the
number of matching interest points in the frames composing the shots. A decision
on elimination is taken on a threshold computed on the similarity values of these
features. Figure2 depicts removal of duplicate frames in a video. An elaboration on
the various feature descriptors used for redundancy control in video summarization
tasks is presented in the next section.

Fig. 2 Redundancy removal
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4 Role of Interest Point Detection in Video Summarization

Interest point detection is a field of computer vision that refers to the identification of
points which serve as features to the contents in an image. Interest point generation is
characterized by a definite position in the spatial domain of an image and is defined by
a strongmathematical model. This ensures a high degree of reproducibility in images
under different transformations. An interest point descriptor is used to describe the
texture around the point. Detection of image features has been the focal point of
research in the field of computer vision over the last few decades. Image features
include edges, corners, ridges, blobs, textures, interest points etc. The application
areas of image feature extraction encompass object identification and tracking [61,
62], video surveillance [6, 63], image similarity/dissimilarity metrics [64], content-
based image and video retrieval [1–3, 65, 66], image and video mosaicing [67, 68],
video stabilization [69], 3D image construction [70], video summarization [71] etc.,
to name a few. The matching of a pair of images using feature points involves three
stages i.e. detection of the feature points, description of these points using an n-
dimensional vector and matching these feature vectors. In this chapter, we focus
mainly on interest point detectors and descriptors which can be used for elimination
of redundant frames in a video summarization task.

Initially, interest point detectors were developed with the motivation of extracting
robust and stable features which could reliably represent salient points in the image
and serve as identifiers to it. As research progressed in this field, the focus was on
developing algorithms which extracted feature points immune to variations in light
intensity, scale, rotation etc. Further advances in the field centered on development
of methods which could reliably extract feature points in lesser time by eliminating
information around the chosen points which would not degrade the performance of
the interest point detector. Interest point detectors are based on well-substantiated
mathematical models. Interest points are illustrated by a distinct position in the
image space and are usually representedby amulti-dimensional representative vector.
These vectors encompass local information content of that point which would help
to discriminate it from other points and would also distinctly identify that point in
a perturbed image. It is important to note that the change in relative position of the
selected interest points can be used to estimate the amount of geometric transform
in the objects of a given set of images. The noise points or outliers are detected
by tracking huge change in the estimated transform for the objects in a given image
with respect to the original scene. The interest points corresponding to an object in an
image have mid-level semantic features for describing and identifying it. A majority
of the interest points detected lie on the high frequency regions of the image.

Feature point descriptors have been used by researchers to boost the algorithms
designed for video summarization. This is in contrast to summarization methods
which use visual descriptors [72, 73]. Computer vision algorithms aim to extract the
semantic meaning of images composing the video. This augments the target of video
summarization algorithms to provide a content revealing summary through a concise
representation. Semantic understanding of videos is still a far-fetched reality. In the
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further sections, the various interest point detectors and descriptors are presented
which have been used for the video summarization task in various ways.

4.1 Scale Invariant Feature Transform (SIFT)

SIFT is a feature point detector and descriptor method, proposed by Lowe [74] in
1999. The goal here is to extract certain key-points corresponding to objects in an
image. These key-points are represented by a set of low-level features, necessary
for identification of the objects in an experimental image containing other objects.
The feature points so taken are immune to various translations (such as rotation
and scaling) and also to changes in light intensity. The points are chosen from high
contrast regions, rendering them to be detected under several types of perturbations.
The four steps involved in this method include:-

1. Scale-space Extrema Detection
2. Key-point Localization
3. Orientation Assignment
4. Key-point Description

The SIFT detector and descriptor is designed to be fully immune to changes in
scale and orientation. It is also partially immune to affine distortion and changes
in light. It can be used to identify an object from a group of objects in a given
scene. SIFT feature points are described by feature vectors having 128 elements.
Given a pair of images, the feature points are first detected from both images and
the corresponding descriptors are computed. Euclidean distance between the two set
of feature vectors is then calculated to find the initial set of candidate matches. A
subset of the feature point matches for an object is taken which agree on the scale,
orientation and location is taken to separate out the superior matches. A hash table
based on the generalized Hough transform is used to find the consistent clusters. A
cluster must contain at least three feature points to be considered for the next stage of
model verification. The probability for presence of an object is computed based on
the set of features given. The matches that pass these checks are recognized as true
matches with high confidence. Figure3 depicts the detection of SIFT interest points
on an image. A number of variants for SIFT such as PCA-SIFT (based on Principal
Component Analysis) [75], Harris-SIFT (based on Harris interest points) [76] etc.
with different characteristics have beendesigned for various uses.Various approaches
to video summarization use SIFT or its variants. In [77] a video summarization
method is presented where web images are used as prior input for summarizing
videos containing similar set of objects. SIFT Flow [78] is used to define frame
distance in order to determine the similarity of one frame with another frame. As
mentioned previously, the SIFT descriptor has been used vastly in computer vision
for its robustness and ability to handle intensity, rotation, scale variations despite
its high computational cost. In [79], SIFT and SURF (described in the next section)
feature descriptors have been used to detect forgery in images where copy-move
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Fig. 3 An image marked with SIFT interest points

technique has been used. An approach to video summarization where the semantic
content is preserved has been presented in [80]. The video is segmented into shots
and SIFT features for each shot are extracted. The latent concepts are detected by
spectral clustering of bag-of-words features to produce a visual word dictionary.

4.2 Speeded-Up Robust Features (SURF)

Speeded-Up Robust Features (SURF) [81] was proposed by Herbert Bay et. al. It
was inspired from SIFT. The main advantage of SURF over SIFT is its low execu-
tion speed and computational complexity over the latter. It is claimed to be more
robust than SIFT for different image transformations. It provides reliable matching
of the detected interest points by generating a 64 element vector to describe the
texture around each point of interest. The generated vector for each interest point
are designed to be immune to noise, scaling and rotation. SURF has been used
widely in object detection and tracking. Determinant of the Hessian blob detec-
tor is used for the detection of interest points. To detect scale-invariant features, a
scale-normalized second order derivative on the scale space representation is used.
SURF approximates this representation using a scale-normalized determinant of the
Hessian (DoH) operator. The feature descriptor is computed from the sum of theHaar
wavelet [82] response around the point of interest. To find the similarity between a
pair of images, the interest points detected are matched. The amount of similarity
between the images is the ratio of descriptor matches to the total number of inter-
est points detected. Figure4 illustrates the SURF correspondences on two similar
video frames. Research article [83] deals with identifying faces in CCTV cameras
installed for surveillance purposes. A database of human faces is created as new
faces appear in front of the camera. A Haar classifier is used for recognizing human
faces in images. SURF descriptors provide a match between the detected face and
existing faces in the database. In case the faces in the database do not match, the new
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Fig. 4 SURF correspondences between two similar images

face is updated in the database. Bhaumik et al. [84] presents a technique for static
video summarization in which key-frames detected in the first phase from each shot
are subjected to redundancy elimination at the intra-shot and inter-shot levels. For
removal of redundant frames, SURF and GIST feature descriptors were extracted for
computing the similarity between the frames. The work also compares the quality of
summary obtained by using SURF and GIST descriptors in terms of precision and
recall.

4.3 DAISY

The DAISY feature descriptor was proposed by Tola et al. [85]. It was inspired by
the SIFT and GLOH [86] feature descriptors and is equally robust. DAISY forms
25 sub-regions of 8 orientation gradients, resulting in a 200 dimensional vector. The
sub-regions are circular in nature and can be computed for all pixels in an image.
A Gaussian kernel is used in DAISY as opposed to a triangular kernel for SIFT
and GLOH. In this descriptor, several Gaussian filters are used on the convolution
of the gradients in definite directions. This is in contrast to the weighted sums of
gradient norms used in SIFT and GLOH. DAISY provides very fast computation of
feature descriptors in all directions and is therefore appropriate for dense-matching.
According to [34], DAISY is 2000% faster than SIFT 4 × 4, when sampling each
pixel.

4.4 GIST

GIST [87] feature descriptor was proposed by Oliva et al. in 2001 to represent the
dominant spatial structure of a scene. This low-level representation is done using a
set of five perceptual dimensions i.e. naturalness, openness, roughness, expansion
and ruggedness. The spectral components at different spatial locations of the spatial
envelope is computed by using a function called theWindowedDiscriminant Spectral
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Fig. 5 GIST descriptors for an image

Template (WDST). The perceptual dimensions can be reliably computed by using
spectral and coarsely localized information. GIST has been used by researchers for
various applications such as finding similarity in images for redundancy removal [42,
84], similar image retrieval [88] and 3D modeling [89], scene classification [90],
image completion [91] etc. Different approaches have been developed by Torralba
et al. [92, 93] to compress the GIST descriptor. Figure5 depicts GIST descriptors
for an image.

4.5 Binary Robust Independent Elementary
Features (BRIEF)

BRIEF [94] was proposed by Calonder et al. in 2010. It is a feature point descrip-
tor which can be used with any available feature detector. Commonly used feature
detectors like SIFT and SURF generate long vectors of 128 and 64 dimensions
respectively. Generation of such features for a large number of points not only takes
a fair amount of computation time but also consumes a lot of memory. A minimum
of 512 and 256 bytes are reserved for storing a feature point in SIFT and SURF
respectively. This is because of using floating point numbers to store the dimension
values. As a result an appreciable time is taken to match the feature descriptors due
to large number of elements in the descriptor vectors. Since all the elements are not
required for matching, methods like PCA or LDA may be used to find the more
important dimensions. Local Sensitive Hashing (LSH) may be used to convert the
floating point numbers to string of binary values. Hamming distance between the
binary strings is used to compute the distance by performing the XOR operation and
finding the number of ones in the result. BRIEF provides a shorter way to find the
binary strings related to an interest point without finding the descriptor vectors. As
BRIEF is a feature descriptor, feature detectors like SIFT, SURF etc. have to be used
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to find the interest points. BRIEF is thus a quicker method for computing the feature
descriptor and matching the feature vectors. Subject to moderate in-plane rotation,
BRIEF provides a high recognition rate.

4.6 Oriented FAST and Rotated BRIEF (ORB)

ORB [95] is a fast and robust feature point detector, proposed byRublee et al. in 2011.
Many tasks in computer vision like object identification, 3D image reconstruction,
image similarity analysis etc. can be done using ORB. It is based on the FAST feature
point detector and BRIEF (Binary Robust Independent Elementary Features) visual
descriptor. It is invariant to rotation and noise resistant. ORB provides a fast and
efficient alternative to SIFT and has been shown to be two orders of magnitude faster
than SIFT. A method to detect moving objects during camera motion is presented
in [96]. To compensate the camera motion, Oriented FAST and Rotated BRIEF
(ORB) is used for the feature matching task. The mismatched features between two
frames are rejected for obtaining accuracy in compensation. The work also evaluates
SIFT and SURF against the presented method to estimate performance in terms of
speed and precision.

5 Proposed Methodology

A flow diagram of the proposed method is given in Fig. 6. The various steps of the
method are detailed in further sub-sections.

5.1 Extraction of Time Sequenced Image Frames
from a Video

The first step towards the video summarization process is to disintegrate the video
into a set of time-sequenced image frames to facilitate the process of extracting key-
frames from it. This is done by using a standard codec, corresponding to the file type
i.e. MP4, MPEG, AVI etc. The images thus obtained are stored as bitmaps for further
processing.

5.2 Detection of Video Segments

The transition between two shots is usually classified into two categories i.e. abrupt
and gradual. The abrupt transitions are also referred to as hard cuts, whereas, gradual
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Fig. 6 Flow diagram of proposed method

transitions include dissolves, fade in and fade out. 95% of these transitions are hard
cuts. The decomposed video frames in the previous step are analyzed for detection of
shot boundaries. An effectivemechanism for video segmentation has been developed
by the authors in [97], where a spatio-temporal fuzzy hostility index was used. The
same mechanism is employed for detection of shot boundaries in this work.

5.3 Shot-Wise Extraction of Key-Frames and Formation
of Representative Set

The key-frames in a video are the representative frames which aptly represents its
contents. Given a video, V = s1

⊗
s2

⊗
s3 . . .

⊗
sn where si is a composing shot

of V , the task of static video summarization is to assign a Boolean value to the pair
(fij, rsj) where fij is the ith frame of the jth shot and rsj is the representative set of the
jth shot. Thus, the initial summary generated after the shot-wise extraction of key-
frames isRS = {rs1, rs2, rs3, . . . , rsn}. Initially, the frame having the highest average
Fuzzy Hostility Index (FHI) [98] within a shot is chosen as the first key-frame. A
search is conducted in both directions of the chosen key-frame such that a frame
is reached which has dissimilarity more than (μ + 3σ ) where μ is the mean of the
average FHIs of the frames in the shot and σ is the standard deviation. The key-frame
extraction method has been depicted in Fig. 7. To ensure proper content coverage,
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Fig. 7 Key-frame selection process

representative frames are chosen from each shot. The set of key-frames which are
extracted from each shot of the video form the representative set.

5.4 Redundancy Reduction to Generate the Final Video
Summary

Redundancy of content may occur at the intra-shot and inter-shot levels. Intra-shot
content duplication takes place when multiple frames containing the same visual
content are chosen as key-frames from within a particular shot. This occurs when
there are enough discriminating features between the frames to render a conclusion
that the frames are dissimilar in spite of same visual content. It may also occur in
cases where the similarity metric or function chosen for the purpose, yields a value
below a pre-determined threshold. Inter-shot redundancy occurs when shots with
similar content are intermingled with other shots. This leads to similar frames being
chosen from multiple shots. The process of intra-shot redundancy reduction on the
set can be viewed as a task of eliminating a set of frames Fi = {f1, f2, f3, . . . , fk}
from the representative set rsi of the ith shot. The same operation is performed on
all the shots and the set obtained may be referred to as reduced representative set
(RRS). Thus, RRS = {rs1 − F1, rs2 − F2, . . . , rsn − Fn}. The inter-shot redundancy
reduction is elimination of a key-frame set FR = {f1, f2, f3, . . . , fm} such that the final
representative set FRS or final summary generated is FRS = RRS − FR. The result
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of such elimination process ensures that the similarity (δ) between two elements in
FRS is less than a pre-determined threshold (γ ). Thus, if we consider a set T = {y :
δ(x, y) > γ, x ∈ FRS, y ∈ FRS}, then T = φ.

The pre-determined threshold may be computed in accordance with an empirical
statute in statistics, called the three-sigma rule. According to this rule (refer Fig. 8),
68.2% values in a normal distribution lie in the range [M − σ, M + σ ], 95.4% values
in [M − 2σ, M + 2σ ] and 99.6% in the range [M − 3σ, M + 3σ ], where M denotes
the arithmetic mean and σ denotes the standard deviation of the normally distributed
values. This rule can be effectively utilized for computing the threshold (γ ) used for
redundancy elimination. A set of p feature point descriptors are extracted from an
image frame I1. The same set of descriptors are matched in another image frame I2.
Assuming that q out of p descriptors match, the similarity between the two image
frames, δ(I1, I2) = p

q . It can easily be seen that the extent of similarity between the
two images is expressed as a real number in the range [0, 1]. Values closer to 1
denote a high similarity. It may further be noted that since δ is calculated on the basis
of feature point descriptors, the metric used is closely related to the visual content
of an image rather than other low level descriptors such as color model, histogram,
statistical measures on pixel values etc. Therefore, for a shot Si = {I1, I2, I3, . . . , In}
the mean and standard deviation of the similarity values is computed as:

μ =
∑n

i,j=1 δ(Ii, Ij)
(n
2

) (1)

σ =
√∑n

i,j=1(δ(Ii, Ij) − μ)2
(n
2

) , i �= j (2)

Fig. 8 Normal distribution with three standard deviations from mean
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If the similarity value for a pair of frames is greater than μ + 3σ , one of the two
is eliminated. After intra-shot redundancy is eliminated from the composing shots
of the video, the set RRS is obtained. Although intra-shot redundancy elimination
ensures coverage, it compromises with conciseness of representation. The technique
described above may be applied as a whole on the image frames of the set to generate
the set after intra-shot redundancy reduction. The proposed method is able to tackle
duplication of visual content not only at the intra-shot level but also on the video as
a whole. In addition, the user can exercise control over the amount of redundancy by
selecting a threshold above or below μ + 3σ which is based on statistical measure.

6 Metrics for Video Summary Evaluation

The evaluation of a video summary is not a simple task due to the unavailability of
ground truth for the videos in the dataset under consideration. Moreover, the quality
of a summary is based on human perception. It is sometimes difficult for humans
to decide as to which summary is the better one. This has rendered difficulties for
researchers in designing the different metrics necessary for both evaluation of the
summaries and comparison of the different approaches. A brief explanation of the
various approaches followed for video summary evaluation is presented in further
sub-sections.

6.1 Key-Frame Evaluation

Thismethodwas proposed in [99] and focuses on an indirect evaluation of the system
generated summary. The key-frames selected by the system are rated on a scale of 5
by independent evaluators [100, 101]. A score of 1 denotes least significance and 5
denote that the chosen key-frame is most significant and relevant for the summary.
Appraisal of the video summary is also done by the evaluators to ensure the quality
of the summary. The quality of a summary depends on two important factors:

1. Amount of information content (entropy)
2. Coverage of the video content through the key-frames

The mean score of the key-frames is computed to quantify the quality of summary.
The formula used in [99] is:

score = sum of keyframe score

number of keyframes
(3)
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6.2 Shot Reconstruction Degree

The extent to which a set of key-frames is able to reconstruct a shot by means of
interpolation is called shot reconstruction degree (SRD) [102]. SRD represents the
ability of a key-frame set to reconstruct the original contents. Maximizing the SRD
ensures that the motion dynamics of the shot content is preserved. The remaining
frames of the video are generated from the key-frame set by employing an interpo-
lation function. The summarization capability of the system is judged by the extent
to which the original shot is reconstructed. A similarity function is used to compute
the distance between the frames of the original video and those generated by inter-
polating the key-frames. Different schemes involving SRD have been proposed in
[103, 104].

6.3 Coverage

The coverage of a set of key-frames extracted from the original video is defined as
the number of frames which are represented by the key-frame set. In [42] a Minimal
Spanning Tree (MST) is constructed from the frames of a shot. An adaptive threshold
is calculated separately for each shot based on the mean and standard deviation of the
edge weights of the MST. The density of a node is the number of frames lying within
a disc, the radius of which is equal to the computed threshold. A greedy method
is used to choose frames from the list with maximum density. Frames represented
by the chosen key-frame are eliminated from the list. This ensures that the most
appropriate representatives are chosen as key-frames. It can easily be seen that the
chosen key-frames provide a full coverage of the shot. In [105] the coverage has been
defined as the number of visually similar frames represented by a chosen key-frame.
Hence, coverage may be computed by the following formula:

coverage = number of frames represented

total number of frames
(4)

In [67], the coverage is based on the number of feature points covered by a frame
from the unique pool of feature points created from the composing frames of a shot.
Initially all the feature points are part of the set Kuncovered . The coverage of a frame
is computed using the formula:

C = η(Kuncovered

⋂
FPi) (5)

The redundancy of a frame is given by:

R = η(Kcovered

⋂
FPi) (6)
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where, η(X) is the cardinality of set X and FPi is the set of feature points in a frame.
Coverage is thus another metric which reveals the quality of a video summary.

6.4 Recall, Precision and F1 Score

The output of a video summarizer is referred to as the System Generated Summary
(SGS). It is essential to evaluate the quality of this summary. The appropriate way
for appraisal of the SGS is to compare it with a ground truth. Since the SGS is
generated for users, it is natural to bring the ground truth as close as possible to
human perception. The ground truth has been referred to as User Summary [30,
84] in the literature. The User Summary (US) is generated by a group of users.
The videos under consideration are browsed by the users after disintegrating into
constituent frames. The important frames according to user perception are chosen in
order to form the US. The Final User Summary (FUS) is formed by an amalgamation
of the user summaries. The amount of overlap between the FUS and SGS portrays
the efficacy of the summary. The recall and precision are computed as follows:

recall = η(FUS
⋂

SGS)

η(FUS)
(7)

precision = η(FUS
⋂

SGS)

η(SGS)
(8)

FUS: Set of frames in user summary
SGS: Set of frames in system generated summary
η(X): Cardinal no. of set X
The harmonic mean of precision and recall is taken for computing the F1 score. It
provides a consistentmeasure for determining the overall efficiency of an information
retrieval system. The following expression is used to calculate the F1 score:

F1 = 2
precision × recall

precision + recall
(9)

The F1 score varies in the range [0, 1] where a score of 1 indicates that the system is
most efficient.

6.5 Significance, Overlap and Compression Factors

Mundur et al. [48] introduces three new factors for determining the quality of a
summary. The Significance Factor denotes the importance of the content represented
by a cluster of frames. The significance of the ith cluster is given as:
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Significance_Factor(i) = Ci
∑k

j=1 Cj

(10)

where Ci is the total number of frames in the ith cluster and k is the total number of
clusters.

The Overlap Factor determines the total significance of the overlapped clusters
found in two summaries. In other words, we compute the cumulative significance of
those clusters which have a common key-frame set with the ground-truth summary.
This is an important metric for comparing two summaries. This factor is computed
as:

Overlap_Factor =
∑Cp

p∈Common keyframe clustes
∑k

j=1 Cj

(11)

A higher value of the Overlap Factor denotes a better representative summary with
respect to the ground-truth.

The Compression Factor for a video denotes the size of the summary with respect
to the original size of the video. It is defined as:

Compression_Factor = No of keyframes in summary

Total number of keyframes
(12)

7 Experimental Results and Analysis

The proposed method for storyboard generation was tested on a dataset consisting
of nine videos. The dataset is divided into two parts. The first part (Table1) consists
of short videos having average length of 3min and 21s. The second part (Table2)
consists of longer videos of average length 53min and 34s.

All the videos in the dataset have a resolution of 640 × 360 pixels at 25 fps (except
video V7 which is at 30 fps). The videos are in MP4 file format (ISO/IEC 14496-
14:2003), commonly named as MPEG-4 file format version 2.

The efficacy of the proposed method is evaluated by computing the recall, pre-
cision and F1 score of the system generated summary (SGS) against the final user
summary (FUS) as explained in Sect. 6.4. A frame to frame comparison is performed
between the SGS and FUS by an evaluator program written for the purpose. A pair
of frames is considered to be matched if the correlation is more than 0.7. It has been
seen that the frames are visually similar when the correlation exceeds 0.7. This is
significantly higher than the threshold used in [30], where the match threshold was
considered as 0.5.
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Table 1 Test video dataset-I

Video V1 V2 V3 V4 V5

Duration (mm:ss) 02:58 02:42 04:10 03:27 03:31

No. of frames 4468 4057 6265 4965 5053

No. of hard cuts 43 70 172 77 138

Average no. of frames in each shot 101.54 57.14 36.21 63.65 36.35

Table 2 Test video dataset-II

Video V6 V7 V8 V9

Duration (mm:ss) 44:14 52:29 58:06 59:29

No. of frames 66339 94226 87153 89226

No. of hard cuts 626 543 668 1235

Average no. of frames in each shot 105.80 173.21 130.27 72.18

7.1 The Video Dataset

The video dataset considered for testing comprised of videos of short and long dura-
tion. The first video (V1) is the Wimbledon semifinal match highlights between
Djokovic and Del Potro. The video consists of small duration shots and rapid move-
ment of objects. The second video (V2) is a Hindi film song “Dagabaaz” from the
movie “Dabangg2”. It consists of shots taken in the daylight and night time. The third
video (V3) is another song “Chammak Challo” from the Hindi film “Ra.One”. This
video consists of shots taken indoors, as well as some digitally created frames inter-
mingled with real life shots. A violin track by Lindsey Stirling forms the fourth video
(V4) of the data set. Simultaneous camera and performer movements are observed
in the video. Also there are quick zoom-in and zoom-out shots which are taken out-
doors. The last of the small videos (V5) is the official song of the FIFA world cup
called “Waka Waka”. It consists of shots with varied illumination and background.

Thevideos inTable2 are four documentaries (V6–V9) fromdifferentTVchannels.
The videos V6–V9 are four documentaries of longer duration from different TV
channels. The videos are “Science and Technology developments in India”, “Under
the Antarctic Ice”, “How to build a satellite” and “Taxi Driver”. All the videos in the
dataset are available on YouTube.

7.2 Experimental Results

The initial storyboard generated by the proposed method is called the representative
set (RS). It is formed by extracting the key-frames as described in Sect. 5.3. The key-
frames in RS are compared with user summary prior to redundancy removal and the
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results are presented in Table3. The results show high precision, recall and F1 scores
indicating the efficacy of the proposed system. In the next step, intra-shot redundancy
reduction is carried out using both the SURF and GIST feature descriptors on both
RS and user summary. The amount of reduction achieved is summarized in Table4.
The recall and precision are again computed and the results are presented in Table5.
In the final step, redundancy is further removed from RS and user summary at the
inter-shot level using SURF and GIST descriptors. The amount reduction achieved is
enumerated in Table6. The recall and precision values computed after the inter-shot
redundancy phase are presented in Table7. It can be easily seen from the results
that elimination of duplicate frames does have effect on the precision and recall. In
certain cases the post-redundancy metric values are better than the pre-redundancy
phase.

Table 3 Comparison between user and system generated summary prior to redundancy removal

Video Precision (%) Recall (%) F1 Score (%)

V1 98.43 92.64 95.45

V2 90.85 97.54 94.08

V3 99.10 95.67 97.35

V4 94.69 93.98 94.33

V5 96.59 91.89 94.18

V6 99.65 99.55 99.59

V7 98.88 97.12 97.99

V8 98.39 97.18 97.78

V9 98.52 100 99.25

Table 4 Intra-shot redundancy reduction

Video % reduction (SURF) % reduction (GIST)

V1 23 28.12

V2 44.57 55.14

V3 21.645 28.76

V4 26.51 42.10

V5 17.83 23.24

V6 53.18 68.68

V7 57.83 74.19

V8 50.36 72.91

V9 40.38 55.24
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Table 5 Comparison after intra-shot redundancy removal

Video Precision (SURF)
(%)

Recall (SURF)
(%)

Precision (GIST)
(%)

Recall (GIST)
(%)

V1 98.03 98.03 100 100

V2 97.42 99.47 99.03 100

V3 100 100 100 100

V4 97.93 98.95 98.70 97.43

V5 100 100 100 100

V6 97.45 97.24 98.65 99.20

V7 98.30 98.85 96.45 97.22

V8 98.34 98.85 98.67 98.66

V9 96.56 95.55 98.36 98.42

Table 6 Inter-shot redundancy reduction

Video % reduction (SURF) % reduction (GIST)

V1 27 37.5

V2 70.28 78

V3 35.49 39.38

V4 41.66 54.13

V5 35.67 39.45

V6 63.07 73.60

V7 64.94 77.59

V8 48.17 73.11

V9 51.05 68.62

Table 7 Comparison after inter-shot redundancy removal

Video Precision (SURF)
(%)

Recall (SURF)
(%)

Precision (GIST)
(%)

Recall (GIST)
(%)

V1 97.67 95.45 100 100

V2 100 100 100 100

V3 98.65 97.35 100 97.81

V4 96.10 96.10 95.23 96.77

V5 97.39 100 98.19 97.32

V6 98.35 97.63 98.75 100

V7 99.4 98.55 97.65 98.25

V8 97.68 98.44 99.32 99.74

V9 95.36 96.45 99.24 98.86
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8 Discussions and Conclusion

Redundancy removal remains an important step in the task of video summarization.
The proposed method is able to illustrate that the quality of the generated summary is
not degraded by removing duplicate frames having nearly the same visual content. An
additional contribution of this work is the determination of an automatic threshold for
elimination of redundant frames based on the three-sigma rule. The results illustrate
the efficacy of the threshold used. The experimental results leads us to conclude that
the prominent features of a video may be represented in a succinct way, thereby
saving the retrieval and browsing time of a user. This is particularly useful for low
bandwidth scenarios.

Although the problem of removing visual redundancy has been tackled to a great
extent by the use of feature descriptor, yet there is a long way to go in terms of
semantic understanding of the video. For semantic understanding, development of
semantic descriptors need to be designedwhich in turn require extraction of high level
features. These high level features need to be presented in a manner which provides
comparison and matching between the high level feature vectors. This would propel
research in abstraction based representation of the video contents.
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Abstract Dactylology or Finger Spelling is popularly known as sign speech, is a
kind of gesture based language used by the deaf and dumb people to communicate
with themselves or with other people in and around them. In many ways Finger-
Spelling provides a connection between the sign and oral language. Dactylology
can also be used for secret communication or can be used by the security personnel
to communicate secretly with their counterpart. In the proposed work a two phase
encryption technique has been proposed wherein the first phase a ‘Gesture Key’,
generated from Indian Sign Language in real time has been used for encrypting the
Region of Interests (ROIs) and in the second phase a session key has been used to
encrypt the partially encrypted image further. The experimental results show that the
scheme provides significant security improvement without compromising the image
quality. The speed of encryption and decryption process is quite good. The Perfor-
mance of the proposed scheme is compared with the few other popular encryption
methods to establish the relevance of the work.

S. Hore (B)
Department of CSE, Hooghly Engineering & Technology College, Hooghly, India
e-mail: shirshendu.hore@hetc.ac.in

T. Bhattacharya
Department of IT, Techno India, Saltlake, India
e-mail: tanmayb29@gmail.com

N. Dey
Department of Information Technology, Techno India College of Technology, Kolkata, India
e-mail: neelanjan.dey@gmail.com

A.E. Hassanien
Cairo University, Scientific Research Group, Giza, Egypt
e-mail: aboitcairo@gmail.com

A. Banerjee · S.R. Bhadra Chaudhuri
Department of ETC, Indian Institute of Engineering Science and Technology, Shibpur, India
e-mail: ayan@telecom.becs.ac.in

S.R. Bhadra Chaudhuri
e-mail: prof.srbc@gmail.com

© Springer International Publishing Switzerland 2016
A.I. Awad and M. Hassaballah (eds.), Image Feature Detectors and Descriptors,
Studies in Computational Intelligence 630, DOI 10.1007/978-3-319-28854-3_8

203



204 S. Hore et al.
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1 Introduction

The Sign language plays a very important role for deaf and dumb people, i.e. who
have spoken and hearing deficiency. It is the only mode of communication for such
people to convey their messages to others. Thus, it is important to understand and
apprehend the sign language [1] correctly. FingerSpelling is an accepted practice
and widely used for the aforesaid communication. Finger signs are used in different
sign languages for different purposes. It is popularly used to symbolize words of a
verbal language, which has no specific sign convention. So a lot of explanations and
examples shouldbegiven for teaching and learningof a sign language. Sign languages
are categorized based on geographical regions [2]. Figure1 illustrate different signs
used in Finger Spelling American sign language (ASL).

Similarly, Indian Sign Language was also evolved for Indian deaf and dumb
community. It is different in the phonetics, grammar, gestures and syntax from other
country’s sign languages. Designing a hand gesture recognition system for ISL [3–5]
is more challenging than other sign languages due to the following reasons:

Fig. 1 American sign
language
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1. ISL is not standardized.
2. ISL uses both static and dynamic hand gestures.
3. ISL uses both hands to represent most of the alphabet.

2 Background

Dactylology based security is quite challenging since most of the activities are
to be performed in real time [6–10]. A real time environment presents a three-
dimensional (3D) environment. The environment allows person to interact directly
with the intended objects naturally and interactively [11, 12]. In real time environ-
ment one can locate objects and its direction; can produced different kinds of gesture
such as speech, sound, facial expression, hand, eye, and symbolic responses for better
interaction between human and computer [13–15].

Sometimes communications are done through a digital image form (Figs. 2, 3
and 4). But digital images are prone to attack since it can be manipulated easily
using basic image processing tools. Hence, protecting the user’s identity and the
computer’s data both are becoming gradually more and more difficult. The greatest
challenge is to ensure authenticity and integrity of digital image, which means the
origin and the content of the digital file, should remain unaffected. As the problem
stated, is potentially massive and is looming large on the horizon, therefore data
security is the most focused subjects which increasingly gaining more and more
importance and attention. Cryptography [16–21] is the heart of security as it is the
most appropriate and practiced approach.

Fig. 2 Indian sign language
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Fig. 3 Real-time enviornment

Fig. 4 a SURF based interested points dectation, b matching of interested points with targepoints

Selective encryption is a subset of traditional cryptography where encryption is
performed only on the Region of Interest (ROI). Since technology is at our doorstep
therefore novice user or physically challenged people will find it easier to select the
region of his or her interest in the intended object in real time interactively. Selecting
ROI in this way brings flexibility, reduces the use of complex algorithm to determine
the ROIs within the intended object. ROI based Selective cryptography [22] at real
time have lots of advantages over traditional cryptography:
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1. Since we are no longer interested about the whole image rather we are focusing
on some portion of the image which is our ROIs therefore we can reduce our work
to some extent i.e. to determine our ROIs through some complex algorithm.

2. The size of the original image and encrypted image is all most same therefore
we can avoid one extra step that is compression to reduce the consumption of
bandwidth while sending data across proposed by many researchers.

3. Since performance of any encryption and decryption is measured in terms of
speed i.e. time taken to encrypt or decrypt the data, which will be largely reduced
in this process.

4. Selection of ROIs is user dependent, Real time and Session based.

Various application domains of ROI are as follows:

1. In ‘Test Identity Parade’, the identity of the victim is partially protected by putting
up a black mask over the face.

2. The Identity of criminals and terrorist are also protected in the same way.
3. Sometime the interested part (face) of the person who is revealing some unwanted

incidence or secret information before the media.
4. In medical science, by hiding or masking the faces of patients, who are suffering

from critical diseases to reduce the social harassment.

Some disadvantage of ROIs over traditional cryptography system are:

1. For a cryptanalyst it will be easy to track and identify the important portion of
the image.

2. Required expertise domain knowledge in some special cases.

Automatic pattern recognition, feature description, grouping and classification of
patterns are significant problems in the various fields of scientific and engineering
disciplines such as medicine, marketing, computer vision, psychology, biology, arti-
ficial intelligence, and remote sensing. A pattern could be a gait, fingerprint image,
on or offline handwritten, a human face, retina, iris or a speech signal. Pattern recog-
nition is the discipline where we observed how machines can study or analyze the
environment, and then discriminates patterns of interest from their knowledge base,
and makes logical decisions about the categories of the patterns. Among the various
traditional approaches of pattern recognition through machine intelligence, the sta-
tistical approaches are mainly practiced and thoroughly studied [23–25]. Recently
the ANN based techniques has receiving significant attention [26–34]. Sign language
database/template is generally created using features, extracted from finger images.
Some of the popular techniques used for feature extraction and feature matching are
SIFT, SURF [3, 35], FAST etc.

Inspired by the success of SIFTdescriptor, SURF i.e. Speeded-UpRobust Features
was proposed by Bay et al. [35] in 2006, is a robust local feature detector, which can
be used in computer vision for object recognition or reconstruction. The experimental
results show that standard version of SURF is several times faster than SIFT. SURF
is based on sums of 2DHaar wavelet responses and makes an efficient use of integral
images. Integral images provided fast computation of box type convolution Filters.
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The entry of an integral image I_(x) at a location x = (x; y) T represents the sum of
all pixels in the input image I within a rectangular region formed by the origin and x.

T
∑

(x) =
i<=x∑

i=0

j<=y∑

j=0

I (i, j) (1)

Interest points can be detected using a hessian based blob detector. The determinant
of a Hessian matrix expresses the extent of the response and is an expression of the
local change around the area.

H(x, σ ) =
[

Lxx (X, σ ) Lxy(X, σ

Lxy(X, σ ) L yy(X, σ )

]
(2)

where

Lxx (X, σ ) = I (x) ∗ δ2

δx2
g(σ ) (3)

Lxy(X, σ ) = I (x) ∗ δ2

δxy
g(σ ) (4)

3 Related Work

Since research works in real time environment, encryption and machine learning
are significantly gaining popularity, a large number of researches have been carried
out in these areas. Some of the researchers’ findings and methods adopted are listed
below:

Gurjal and Kunnur [3] proposed an algorithm, in which they divided a captured
video into various frames and then used the Gaussian difference feature to solve
Real Time hand gesture recognition. Here the authors used SIFT algorithm to extract
Scale space Feature from each and every frame. A complex and critical method
was presented by Ghotkar et al. [4] where the authors investigated hand gesture
recognition for Indian Sign Language using Camshift and HSV model and then
Genetic Algorithm (GA) was used for recognizing gestures. Since Camshift and
HSV model have compatibility issues with different versions of MATLAB and use
of GA takes a huge amount of time for its development, making the application to run
relatively slow compared to other applications. Rajan and Balakrishnan [5] in their
work suggested that each gesture could be recognized through 7 bit orientation, and
features have been generated through LEFT and RIGHT scan. Approximately six
moduleswere used for recognition of signs and thus itwas quite lengthy and tiresome.
Tamer and Assaleh [36] used Arabic Sign Language gestures in a client independent
mode. In their proposed work, the authors suggested, wearing of gloves by the signer
would simplify the process of hand segmentation. Correa-Tome and Sanchez-Yanez
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[10] proposed an alternative to the commonly usedHausdorff distance (HD) problem.
Here the author used a visual similarity metric based on precision–recall graphs; a
bipartite graph to represent the relationship between a reference shape and a test
template; theHopcroft–Karp algorithm to solve thematching problemwhich reduces
computational complexity. Ishii et al. [11] improved the Viola–Jones face detector
for fast face detection with boosting-based face tracking algorithm. Here the authors
shown that for an 8 bit color image of 512×512 pixels the tracker rate is 500 fps in
real time. Badrinath et al. [12] shown that indexing scheme can be very efficient for
a palmprint-based identification system. In their work geometric hashing on SURF
key-points are used to index the palmprint into hash map table and creates score level
fusion of voting strategy based on geometric hashing and SURF score to identify the
palmprint in real time.

Azzaz et al. [37] developed new design architecture for hardware based chaotic
key generator for low-cost image encryption for embedded systems in real time. Their
proposed design is robust, compact, highly secured and speed of encryption is quite
goodwhile preventing key analysis and statistical attacks. Dardas andGeorganas [13]
creates a grammar that generates gesture commands to control game applicationHere
the authors generated feature (bag of features) using SIFT, histogram vector (bag of
words) using K-means clustering and multiclass support vector machine for training.
Faudzi et al. [14] shows that how effectively we can control a robot at real-time using
hand gesture. Here the authors control the robot using bounding box and center of
mass of the object of the gesture sing. Ohn-Bar and Trivedi [15] proposed to classify
hand gestures that combined RGB and depth descriptor for a vision-based system.
Here the author used two interconnected modules one that detects a hand in the
region and performs user classification, other which performs gesture recognition
using RBGD dataset

Min et al. [25] suggested that the visual recognition can be either static or dynamic
gesture. In their work they recognized hand gestures without using any external
devices. Gestures are picked up from the visual images on a 2D image plane. Ges-
tures were spotted by a task specific state transition based on natural human articu-
lation. Static gestures were recognized using image moments of hand posture, while
dynamic gestures were recognized by analyzing their moving trajectories on the
Hidden Markov Models (HMMs).

A lot of research was also carried out in the field of cryptography. Since no single
algorithm is sufficient different researchers proposed different approaches. Yang and
Wang [16] developed a new transformingLSBsubstitution calledmatching approach,
to find a better solution and to reduce long running time. Rahouma [17] proposed a
block cipher technique for security of data and computer networks. The technique
was used for text, binary and hexadecimal information. Belmeguenai et al. [18]
introduced a new stream cipher which is based on nonlinear filtering function. To get
the best possible result, prevent possible attacks and to satisfy all the cryptographic
criteria here the authors introduced a Boolean function in their algorithm that is a
resilient function. Bhattacharya et al. [19] proposed session based bit level cipher
technique using helical and columnar transpositions where ‘Session Key’ was used
as a sequence of decimal digits. Mandal and Dutta [20] used a 256-bit recursive pair
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parity encoder for encryption. Bhattacharya et al. [21] shows that an enhancement of
information security can be obtain using substitution of bits through prime detection
in blocks.

The growing popularity of neural network models to resolve the pattern recog-
nition related problems has drawn attention for researcher’s to get involved in this
domain. Ali Shah et al. [28] proposed Interactive Voice Response (IVR) with pattern
recognition based on Neural Networks. Identity verification is resolved by com-
bining the password and voice sample. Lamar et al. [29] proposed American and
Japanese alphabet recognition using PCA for extracting features like position of the
finger, shape of the finger and direction of the image described by mean values,
Eigen values and Eigen vectors respectively. Yewale and Bharne [30] investigate
different hand gesture recognition process and some algorithm related to skin and
edge detection in this regard using Matlab as a development tools. Ibraheem and
Khan [31] conducted a survey on numerous hand gesture recognition that make use
of Neural Networks and drawn comparisons between these methods, advantages
and drawbacks and implementation for each of the stated method. Zhang et al. [33]
introduced a new framework for hand gesture recognition that is based on two sen-
sors namely ACC and EMG. The intensity of the EMG signals is used as a base
for automatic detection of meaningful gesture segments. Outputs are obtained after
successful fusion of decision. Here the authors used multistream hidden Markov
models and decision tree. A highly secured session based data encryption technique
using robust fingerprint based authentication was proposed by Bhattachaya et al. [34]
where Artificial Neural Network used for fingerprint template generation. Biometric
key was generated from the template.

4 Proposed System

In the proposed method we are going to secure any digital data from unauthorized
access using both ROIs and traditional approach. The block schematic diagram of
our proposed scheme is shown in Fig. 5.

The proposed system is divided into five major steps.

4.1 Generation of ISL Database

The ISL Database generation process consists of following steps.

1. Different sample Images [A–Z] for ISL Database have been generated.
2. Unwanted noises are removed from the generated images through pre- processing.
3. Background part of ISL images are removed using skin detection.
4. Optimized features of captured images are extractbased on optimized points.
5. Trained, Tested and validated the sample acquired images using ANN.
6. ISL database has been generated and categorized based on extracted features.
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Fig. 5 Block diagram of our proposed system

4.2 Real-Time Finger-Word Generation

The Real-time Finger-word generation process consists of following steps

1. In real time user indicate the number of finger signs to be captured to form the
desired Finger-Word.

2. Finger sign is captured using webcam until desired number is satisfied.
3. Captured image is pre-processed to remove unwanted noise and backgrounds.
4. Optimal features are extracted and matched with the pre-build ISL Database
5. On successful match a Finger sequence number has been generated from the

corresponding ISL database sequence number and goto step 2 otherwise goto
step 7.

6. Finally store the Finger sequence number and number of finger signs to be cap-
tured.

7. Finger-word generation process has been terminated.

4.3 Real-Time Finger-Word Recognition and Key Generation

The Real-time Finger-word recognition and key generation process consists of fol-
lowing steps:
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1. All the necessary information generated at Finger-Word generation process has
been retrieved.

2. In real-time user indicate the number of finger sign to be capture to form the
desired Finger-Word.

3. On successful match with the indicated number of finger sign, goto step 4 oth-
erwise goto step 11.

4. Finger sign is captured in real time using webcam.
5. Captured image is pre-processed to remove the unwanted noise.
6. Background part of ISL image are removed using skin detection.
7. Optimized features of captured image is extracted based on optimized points.
8. Extracted features are matched with pre-build ISL database.
9. On successful match a Finger sequence number has been generated from the

corresponding ISL data base sequence number and goto step 2 otherwise goto
step 11.

10. On successful match of finger a sequence number a ‘Gesture Key’ have been
generated from the gesture images for the first phase encryption.

11. Finger-Word Recognition has been terminated.

4.4 Encryption of Data

Encryption of data process consists of two steps.

• 1st Phase Encryption of ROIs
• 2nd Phase Encryption of whole Image.

4.5 Decryption of Data

Step 1: It is the just opposite of the encryption process.

5 Explanation of Proposed Approach

5.1 Generation of ISL Database

The ISL Database generation process consists of following steps.

1. Different sample Images [A-Z] for ISL Database have been generated: At the
outset different Finger images are captured through webcam which are used as
signs in ISL. Since ISL signs are not standardized, flexibly these can be used for
different purposes, which is ideal from security point of view. Here 24 signs are
captured corresponding to 24 alphabets (English).
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2. Pre-processing and skin detection: To keep the system simple, background
color of the captured images is kept white. Median filter has been used twice
for the purpose of noise removal. Since we are only interested in finger shapes,
skin detection algorithm has been used to extract the sign portion from the image.
Figure11a–c illustrate finger signs, Finger sign after skin detection and extraction.
Further sign part is cropped to remove unwanted portion.

3. Optimized features have been generated: Once Finger parts are separated from
the image, the SURF feature detection algorithm is used for extracting the features
from image.

1. Given a image the key points K = {k1, k2, k3, . . . , kn} have been generated
where n is the no of key points

2. From the abovedetectedkeypoints, the correspondingdescriptor F = { f 1, f 2,
f 3, . . . , f n} have been generated

3. For each keypoint ki and descriptor fi, Stored the keypoints and descriptors in
a M×N matrix.

Since number of SURF Points differ from the image to image, in the proposed
approach Ten (10) strongest features have been extracted.

For i = 1 to M,
For j = 1 to N.

Calculate the Euclidian distances E D = {L1, L2, L3, . . . , Ln − 1} for
(n − 1) other neighboring keypoints.
Find the ten good matches m = {m1, m2, m3, . . . , m10} based on
minimum Euclidian distance.

Figure11d, e illustrate Finger sign with SURF points and finger Sign with 10
optimized points.

4. ISL database has been generated and categorized based on extracted fea-
tures: ISL database have been generated with the optimal features. Figures9 and
10 shows the ANN validation and classification assessment results.

5.2 Real Time Finger-Sequence Generation

The Real-time Finger-word generation process consists of following steps

1. Real-time Finger-Word have been generated: Initially the user indicated the
number of finger signs to be captured to form his or her desired Finger-Word.
Now if the user wants to communicate the word ‘YES’. The user indicates three
(3) and the system is going to captured 3 finger signs using a web cam. Some
delay is used to ensure proper capture. Now the user shows the first finger sign.
System captured the sign and does all pre-processing to remove the unwanted
noise and background information.
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2. Optimized features extraction and feature matching with the pre-build ISL
Database: If the matching score of extracted features from Finger-Word is within
the threshold value then a string type finger sequence has been generated. The fin-
ger sequence is the sequence number obtained from ISL database. In our example
for ‘y’ it is ‘25’. If the matching score does not satisfy the threshold value, then
Finger-Word generation process has been terminated. This process will continue
until the desired Finger-Word is produced. Finally the finger sequence number
and number of sign to be captured are stored. For our example the finger sequence
is ‘250518’ which is concatenated value of ‘y’, ‘e’, ‘s’ and number of sign to be
captured is ‘3’.

3. Finally store the Finger sequence number and number of finger signs to be
captured.

5.3 Real-Time Finger-Word Recognition and Key Generation

In this part real time Finger-Word is recognized and ‘Gesture Key’ has been gener-
ated. The process consists of following steps

1. Finger-Word Information has been retrieved: In the very beginning system
retrieved the necessary information stored in Finger-Word generation step. In our
case it is ‘250518’ and ‘3’.

2. No of Finger-sign has been captured in realtime: The user indicates the number
of finger sign to be captured using webcam. If the numbers of signs to be captured
are notmatchedwith the retrieved sign number i.e. ‘3’ then the recognition process
has been terminated. On successful match with the indicated number of finger
sign go to the next step.

3. Desired Finger signs are captured in real time: On a successful verification
first sign is captured using a web cam. As stated in the earlier section, median
filter has been used twice for noise removal after that skin detection algorithm has
been used to extract the finger parts from the captured image and then cropped,
to avail the portion intended for feature extraction.

4. Finger sequence has been generated: Ten (10) strongest features point are being
extracted using SURF algorithm and simulated the extracted feature value with
the pre-build ISL database. If the matching score has within the threshold value
then produce a string type finger sequence as discussed in FingerWord generation
step. This processwill continue until the desired Finger-Word is produced. Finally
finger sequence number ismatchedwith the retrieved information. In our example
it is ‘250518’. On successful verification password from a sequence of captured
finger image have been generated.

5. Gesture Key has been generated: On a successful match of finger sequence
number a 128 bit ‘Gesture Key’ has been generated using MD5 hash algorithm
for the first phase encryption of ROIs. Finally encrypted the selected portions of
the image using ROIs as well as the whole image traditional approach using a
session based key.
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5.4 Encryption of Data

Encryption of data process consists of two steps.

1st Phase Encryption of ROIs

1. The secret image is selected for the purpose of encryption.
2. Multiple regions of Interest have been selected interactively at real time.
3. Binary masks, based on ROIs is generated and placed over the ROIs.
4. The selected regions of the image are encrypted using ‘Gesture Key’ which is

generated from the gesture images.

2nd Phase Encryption of whole Image

1. To ensure better security partially encrypted image is further perturbed using
Session based pass word. If the size of key generated is small then necessary
padding being done. Bit level XOR operation is performed using

2. ‘Session Key’ to encrypt the image. Finally the encrypted image is saved and
sends to the intended recipient.

5.5 Decryption of Data

Decryption of data process consists of following steps

1. Session based, password should be given.
2. The same dactylology gestures are reproduced to generate the ‘Gesture Key’.

The image is fully recovered by applying the reverse process of masking multiple
ROIs.

6 Results and Discussion

In this section, experimental results of the proposed approach have been shown. The
proposed system has been implemented using MATLAB (R2013) on an Intel Dual
core 2.0GHz Processor, with 2GB RAM, Windows XP as a platform and with an
12 Mega pixel, USB webcam capture (with different resolutions such as 640×480,
320×240 and 160×120, at 15 frames-per second) for image, which is adequate
for real time image application. In our proposed approach, we have used a set of
popular standard image such as Lena, Cameraman, Baboon, Gold Hill, Barbara etc.
with size varies from 64×64 to 512×512 as the original images (plaintext image)
and apply the encryption or decryption process. The experiments were performed
several times to assure that the results are consistent and are valid. The Fig. 6a shows
the proposed system; Fig. 6b shows the real time environment. Figure6c shows the
generated Finger-Word using the different Finger sign for our proposed work (Figs. 7
and 8).
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Fig. 6 a UI of the proposed system, b real-time environment of proposed system, c generated ISL
Dataset for our proposed work

Fig. 7 Finger-Word ‘yes’
has been generated using
sequence of ISL based finger
sign at real time using the
proposed scheme
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Fig. 8 a Sign image captured at real time for our proposed work, b removal of background infor-
mation from the captured image with skin detection, c cropped sign image, d extraction of features
points from the sign image using SURF, e optimal feature have been generated from extracted
features

Fig. 9 a Performance
assessment of ANN process
using validation curves, b
ratio of correct and incorrect
classification
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Fig. 10 Performance assessment of ANN training process using ROC curve

Figure9 showing the performance ofANN training using validation curves, classi-
fication performance ratio correct versus incorrect classification in percentage while
Fig. 10 showing the classification assessment using ROCCurve (Figs. 11, 12 and 13).

Based on the results shown in Fig. 14 there is no visual information observed in
the encrypted image, and the encrypted images are visually indistinguishable even
with a big difference with respect to the original images.

6.1 Comparitative Anlysis of Proposed Work

In this section, a number of parameters have been discussed. Using these parameters
the effectiveness and integrity of an image encryption scheme can be evaluated. In
order to evaluate the performance and the strength/security of the computed system,
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Fig. 11 a Finger sign captured in real-time, b background removal through skin detection, c
showing cropped sign image, d extraction of features points from the sign image using SURF, e
optimal feature have been generated from extracted features, f closest matched sign image have
been retrieved from ISL database, g comparison of features between (a) and (f), h pixel distribution
of (a), i pixel distribution of (f)

Fig. 12 aFinger sign captured in real-time,bbackground removal through skin detection, c cropped
sign image, d extraction of features points from the sign image using SURF, e optimal feature have
been generated from extracted features, f message showing the captured image does not belong to
ISL database
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Fig. 13 a Original image, b
Blue color rectangle and
square is showing ROIs in
original image, c ROI’s are
encrypted with noise, d
encrypted image

Fig. 14 a Encrypted image,
b decrypted image with
noise 1 and noise 2 c image
after noise 1 is removed d
fully recovered image [both
noise 1 and 2 are removed]

the parameters that are used for algorithm testing are Histogram, Correlation coeffi-
cient, Entropy, MSE, and PSNR. Figure15 shows Histogram of Original image and
Encrypted Image. Tables1 and 2 measures, encryption quality through correlation
coefficient (plain image vs. encrypted image) and image entropy analysis. In Table3
MSE and PSNR results shows the quality of the encryption process. Another cho-
sen factor to determine the performance or response of the proposed system is the
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speed or time taken to encrypt /decrypt data of various sizes. Tables4, 5 and 6 dis-
play the Throughput, CPU utilization time and Memory utilization, encryption and
Decryption time. The proposed system is quite secure since the key stream Used for
encryption was generated randomly, thus it will not be very hard to predict future key
stream nor the attacker should not be able to recover the cipher’s key. In the Tables7
and 8, we compare performance of proposed work with Salsa20 [38].

Fig. 15 Histogram of a
original image, b encrypted
image
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Table 1 Correlation and coefficient value showing the encryption quality between plain Image
versus encrypted image of the proposed work

Correlation and coefficient analysis (plain image vs. encrypted image)

Image Direction of adjacent
pixel

Plain image Encrypted image

Barbara Horizontal 0.9859 0.0317

Vertical 0.9686 0.0247

Diagonal 1 0.0022

Lena Horizontal 0.9992 0.0042

Vertical 0.8917 0.0471

Diagonal 0.9568 0.0018

Gold Hill Horizontal 0.9762 0.078

Vertical 0.9782 0.0433

Diagonal 0.9532 0.0014

Baboon Horizontal 0.9665 0.0187

Vertical 0.9281 0.2

Diagonal 1 0.0002

Table 2 Entropy value estimates the encryption quality of proposed work

Name of
the image

m source of value

2 4 8 16 32 64 256

H(m) ideal value of entropy

1 2 3 4 5 6 8

Barbara 0.9971 1.9978 2.915 3.9999 4.9999 5.9998 7.9971

Lena 0.9962 1.9965 2.9956 3.9998 4.9998 5.9996 7.9992

Baboon 0.9989 1.9878 2.998 3.9999 4.9999 5.9998 7.9991

Gold Hill 0.9974 1.9998 2.9938 3.9989 4.9999 5.9999 7.9992

Table 3 PSNR and MSE values measuring the quality of encryption process of proposwork

Image PSNR MSE

Barbara 7.88 10670

Lena 8.59 9075

Baboon 9.76 7248

Gold Hill 9.09 8085
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Table 4 Throughput, CPU time (Hz), memory sized (KB), encryption and decryption speed in ms
measuring the performance of the work

Image Throughput CPU (Hz) Memory
(Bytes)

Encryption
time (ms)

Decryption
time (ms)

Baboon 64 853333.33 0 0 0.000075 0.000076

Baboon 128 514590.16 0 20480 0.00244 0.000248

Baboon 256 245508.11 0 69632 0.001047 0.000937

Baboon 512 324255.85 0 532480 0.001579 0.002015

Baboon 1024 121025.88 0.0313 2113536 0.008461 0.008891

Average 413542.67 0.00626 547225.6 0.0022812 0.0024334

Table 5 Throughput, CPU time (Hz), memory sized (KB), encryption and decryption speed in ms
reflecting the performance of the work

Image Throughput CPU (Hz) Memory
(Bytes)

Encryption
time (ms)

Decryption
time (ms)

Barbara 64 955223.88 0 0 0.000067 0.000076

Barbara 128 556521.73 0 20480 0.00023 0.000245

Barbara 256 274383.70 0 69632 0.000933 0.000971

Barbara 512 325699.74 0 532480 0.001572 0.003705

Barbara 1024 122502.69 0.0313 2113536 0.008359 0.008551

Average 446866.35 0.00626 547225.6 0.0022322 0.0027096

Table 6 Throughput, CPU time (Hz), memory sized (KB), encryption and decryption speed in ms
showing the performance of the work

Image Throughput CPU (Hz) Memory
(Byte)

Encryption
time (ms)

Decryption
time (ms)

Lena 64 984615.38 0 0 0.000065 0.000076

Lena 128 522448.97 0 20480 0.000245 0.000246

Lena 256 281009.87 0 69632 0.000911 0.000941

Lena 512 232515.89 0 532480 0.002202 0.002028

Lena 1024 122634.73 0.0156 2113536 0.008351 0.008407

Average 428644.93 0.00312 547225.6 0.0023546 0.0023396
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Table 7 Correlation and coefficient values showing performance of proposed versus existing Salsa
method [38]

Correlation and coefficient comparison between proposed work versus existing Salsa method

Image Adjacent pixel direction

Horizontal Vertical Diagonal

Plain-image 1.0000 0.9986 0.9988

Salsa 20/8 cipher image 0.0430 0.0383 0.0117

Salsa 20/12 cipher image 0.0348 0.0021 0.0195

Salsa 20/20 cipher image 0.0030 0.0204 0.0653

Proposed method cipher image 0.0042 0.0271 0.0018

Table 8 Encryption and decryption time showing performance of proposed versus existing Salsa
method [38]

Comparison of encryption and decryption time between proposed method versus existing Salsa

method

Image Average encryption time (ms) Average decryption time (ms)

Salsa 20/8 cipher image 1.3 1.3

Salsa 20/12 cipher image 1.7 1.7

Salsa 20/20 cipher image 2.6 2.6

Proposed method cipher image 0.000951 0.00095

7 Conclusion

Dactylology based selective image encryption using Speeded-Up robust features
extraction technique and artificial neural network at real time is proposed in this
work. In this scheme ISL images were used as a secret symbol or sign to performed
encryption or decryption operations. Through experimental results we show that the
work can be used to maintain the integrity of the ROIs in digital data, thus it has
good prospects in the security domain. To judge the integrity and effectiveness of
the proposed schemewe usedHistogram, Correlation coefficient, Entropy,MSE, and
PSNRvalues between theOriginal image and the Encrypted image. The performance
or response of our work is measured using different parameter such as time taken
to encrypt or decrypt data of varying size, CPU occupancy time, Memory it has
consumed and Throughput. A comparative study between our scheme and existing
Salsa method also suggest that work has sufficient prospect in the security domain.
The work can be further extended by observing a sequence of video image instead
of captured still image.
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Spectral Reflectance Images and Applications

Abdelhameed Ibrahim, Takahiko Horiuchi, Shoji Tominaga
and Aboul Ella Hassanien

Abstract Spectral imaging has received a great deal of attention recently. Spectral
reflectance observed from object surfaces provides crucial information in computer
vision and image analysis which include the essential problems of feature detec-
tion, image segmentation, and material classification. The estimation of spectral
reflectance is affected by several illumination factors such as shading, gloss, and
specular highlight. The spectral invariant representations for dielectricmaterials only,
for these factors, are inadequate for other characteristic materials like metal. In this
chapter, a spectral invariant representation is introduced for obtaining reliable spec-
tral reflectance images. The invariant formulas for spectral images of natural objects
preserve spectral information and are invariant to highlights, shading, surface geom-
etry, and illumination intensity. As an application, a material classification method
is presented based on the invariant representation, which results in reliable segmen-
tations for natural scenes and raw circuit boards spectral images.

1 Introduction

During the last few years, the importance of spectral imagery has sharply increased
following the development of new optical devices and the introduction of new appli-
cations. The spectral imaging system is a system which captures and describes color
information by a greater number of sensors than anRGBdevice resulting in a spectral
representation that uses more than three parameters. Figure1 shows an illustration
of a spectral scene and the corresponding 3-color RGB image. The problem with
conventional color imaging systems is that they have some limitations, namely,
dependence on the illuminant and characteristics of the imaging system. On the
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Fig. 1 An illustration of the spectral data with ten bands and the corresponding image as it would
be acquired with a color imager [3]

other hand, spectral imaging systems can provide spectral reflectance information
and therefore the systems are illuminant independent [1, 2]. Color imaging naturally
becomes spectrophotometric; therefore, spectral imaging must be the technique of
the immediate future.

Spectral imaging is used, for example, in remote sensing, computer vision,
and industrial applications. Spectral information has become an important qual-
ity factor in many industrial processes because of its high accuracy [4]. Spectral
images can be obtained, for example, by a CCD-camera with narrow-band inter-
ference filters [5]. Tominaga [6, 7] described two generations of a multi-channel
vision system based on the use of a CCD-camera and six color filters to recon-
struct the surface spectral reflectance and illuminant spectral power distribution.
Manabe et al. [8] proposed a measurement system of spectral distribution and
shape of an object with the use of an imaging spectrograph installed in CCD-
camera. Haneishi et al. [9] developed a six-band camera consisting of three high
sensitive bands and three low sensitive bands. Several multispectral acquisition
systems have been proposed for imaging artworks [10–21]. Pelagotti et al. [22]
used a multispectral imaging system for the noninvasive analysis of works of art.
Recently, the spectral image resolution and sensitivity are much improved
[23–29]. Du et al. [30] presented a prism-based system for capturing multispec-
tral videos. That system is consists of a triangular prism, a monochromatic camera,
and an occlusion mask.

The main advantage of spectral images, compared with color images, is the large
amount of information involved, which dramatically improves the ability to detect
individual materials or separate areas with visually different spectral bands. The
disadvantage of spectral images is that, since we have to process additional data,
the required computation time and memory increase significantly. However, since
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the speed of the hardware will increase and the costs for memory will decrease in
the future, it can be expected that spectral images will become more important in
many fields of image analysis and computer vision. This chapter introduces a spectral
imaging system that captures high-dynamic range (HDR) image with spatially and
spectrally high resolutions in the region of visible wavelength.

Spectral images are useful for a variety of applications such as material identifi-
cation, natural scene rendering, colorimetric analysis, and machine vision tasks [31].
The observed spectral images do not only depend on surface-spectral reflectance and
illuminant spectrum, but also include various reflection effects such as shading, gloss,
and specularity, which mainly depend on illumination geometries and surface mate-
rials. Therefore, image representations invariant to shading, shadow, lighting, and
specularity have been proposed for spectral images [26, 32–35] and for color images
[36–50] so far in several ways. These invariant representations play an important
role in many applications such as image segmentation [26, 32, 33, 44, 45, 51, 52],
feature detection, such as edge and corner detection, [37, 41, 49, 50, 53–57], object
recognition [39, 58–60], image retrieval [40, 61–63], cast shadow segmentation [64,
65], optical flow calculation [42, 66, 67], and robots [68, 69].

Geusebroek et al. [37] investigated the differential photometric invariance. The
authors provided a set of photometric invariant derivative filters which were used
for invariant edge detection. van de Weijer et al. [49] introduced photometric quasi-
invariants which were a set of photometric invariant derivatives with better noise,
stability characteristics, and then introduced less edge displacement than full photo-
metric invariants. Combining the photometric quasi-invariants with derivative based
feature detectors led to features which could identify various physical causes [50].
This combination allows for detection of photometric invariant edges. Stokman and
Gevers [35] proposed a method for edge classification from spectral images. Their
method aimed at detecting edges and assigning one of the types of shadow, highlight,
and material edge. Montoliu et al. [34] proposed a spectral invariant representation
for dielectric materials. This method used for edge detection of spectral images.

However,most of thosemethodswere constructed based on the dichromatic reflec-
tion model by Shafer [70]. This model assumes that an object surface is composed
of inhomogeneous dielectric material, and the reflected light from the surface is
decomposed into two additive components of body (diffuse) reflection and inter-
face (specular) reflection. This decomposition results in the classification of physics
events, such as shadows and highlights. However, the model-based method is valid
for such limited materials as plastics and paints [71–73]. It should be noted that there
are metallic objects in real-world scenes which cannot be described by the standard
dichromatic reflection model. Tominaga [73] shows that the surface reflection of
metal can be approximated by extended dichromatic reflection model.

This chapter introduces an invariant representation for spectral reflectance images.
The invariant representation for a variety of objects in a real world is derived from the
standard dichromatic reflection model for dielectric and the extended dichromatic
reflection model for metal [25] in more details. We show that the invariant formulas
for spectral images of both artificial object and natural ones preserve surface-spectral
reflectance information and are invariant to highlight, shadow, surface geometry,
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and illumination intensity. Here the illumination spectrum is measured by using a
Spectro-radiometer and a standard white reference and measured the spectral sensi-
tivity functions of the imaging system by using a Spectro-radiometer and a Mono-
chromator.

As an application of the presented invariant representation, the transformed spec-
tral image with the invariant properties is used as an invariant operator for the image
segmentation problem. Several algorithms were recently proposed for segmenting
the spectral images into distinct surface areas (e.g., [24, 74–78]). However, those
algorithms were not always robust for the highlight and shading effects occurred for
different surface materials, and required a careful adjustment of the lighting posi-
tion. As a typical example, it was difficult to segment materials on a raw circuit
board with various tiny elements [79–102]. This chapter presents a segmentation
algorithm based on the invariant representation for effectively segmenting spectral
images of natural scenes and bare circuit boards [25, 26] in details. The presented
invariant representation is also applied to other alternative segmentation algorithms.
Experiments using real-world objects including metals and dielectrics show that the
representation is invariant to highlight, shadow, and object surface geometry, and
effective for image segmentation.

The reminder of this chapter is organized as follow: ‘Reflection models’ section
describes different types of reflection models. ‘Spectral invariant representation’
section develops the spectral invariant representation in details. ‘Spectral image seg-
mentation’ section discusses spectral image segmentation based on the transformed
spectral images to the spectral invariant. ‘Experimental setting’ section introduces
the imaging system. ‘Experiments’ section shows the test results of applying the
invariant representation for different spectral images and presents the segmentation
results for the spectral invariant using different methods. This chapter ends with
‘Summary’ section.

2 Reflection Models

Shafer’s dichromatic reflection model was the first physics-based model of reflection
to separate different types of reflection on a single surface [70]. Shafer’s model
proposed that inhomogeneous dieletrics such as paints, ceramics and plastics exhibit
two types of reflection, surface reflection and body reflection, and that the different
types of reflection caused specific types of changes in appearance. Klinker et al.
used the model to develop an algorithm for separating surface and body reflection in
controlled conditions with a single illuminant [103].

Gershon et al. proposed a similar model, but divided the reflection into three
components: specular, ambient, and diffuse [104]. These reflection modes inter-
acted with direct and ambient illuminants, but not in an orthogonal manner. Where
Shafer’s material reflection model was based on a physical analysis of inhomoge-
neous dielectrics, Gershon’s model arbitrarily divides the reflection components,
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linking the type of reflection with the type of illumination, despite the fact that the
mechanisms of reflection work similarly for all visible light energy, regardless of its
source.

Healey proposed a unichromatic reflection model for metals. This method was
able to extract useful information about the illumination, reflection and material type
under controlled conditions and a single illuminant [105].

2.1 Dichromatic Reflection Models

Standard Dichromatic Reflection Model Light reflected from the surface of an
inhomogeneous dielectric object is composed of two additive components, the
interface reflection and the body reflection according to the standard dichromatic
reflection model [70]. Figure2 shows the dichromatic reflection model of surface
reflectance in inhomogeneous materials.

The radiance of the reflected light Y (θ,λ) is a function of the wavelength λ and
the geometric parameters θ, including the direction angles of the viewing angle and

Fig. 2 The dichromatic reflection model of surface reflectance in inhomogeneous materials. a
Light is scattered from a surface by two different mechanisms. Some incident light is reflected
at the interface (interface reflection). Other light enters the material, interacts with the embedded
particles, and then emerges as reflected light (body reflection). b Rays of light reflected by interface
reflections is likely to be concentrated in one direction. Rays of light reflected by body reflection
are reflected with nearly equal likelihood in many different directions [106]
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the phase angle. The standard dichromatic reflection model describes the reflected
light in the form

Y (θ,λ) = m I (θ)L I (λ) + m B(θ)L B(λ) (1)

where L I (λ) and L B(λ) are the spectral power distributions of the interface and body
reflection components, respectively. The weightsm I (θ) andm B(θ) are the geometric
scale factors.

The reflection model is also described in terms of spectral reflectance. Let E(λ)
be the spectral-power distribution of a uniform illumination. The spectral reflectance
function defined as S(θ,λ) = Y (θ,λ)/E(λ), independent of illuminant, can be
expressed as

S(θ,λ) = m I (θ)SI (λ) + m B(θ)SB(λ) (2)

where SI (λ) and SB(λ) are surface-spectral reflectances for the interface and body
components, respectively. The standard model incorporates the neutral interface
reflection (NIR) assumption which states that interface reflection component SI (λ)
is constant over the range of visible wavelength as SI (λ) = Sc

I . This allows Eq. (2)
to be written as

S(θ,λ) = m ′
I (θ) + m B(θ)SB(λ) (3)

where m ′
I (θ) = m I (θ)Sc

I . It is shown that this reflectance model is valid for a vari-
ety of natural and artificial dielectric objects including plastic and paint (e.g., see
[71–73]).

Extended Dichromatic Reflection Model for Metals Metal is a homogeneous
material that indicates essentially different reflection properties from the inhomo-
geneous dielectric materials. It consists of only interface reflection with the Fresnel
reflectance. Thus, if the surface is shiny and stainless, the body reflection component
in the reflected light is negligibly small. A sharp specular highlight is observed only
at the viewing angle of the mirrored direction. Thus the surface reflection depends
on the incident angle of illumination.

Tominaga [73] shows that the surface reflection of metal can be approximated
by a linear combination of only two interface reflection components. This type of
surface reflection is called the extended dichromatic reflection model. This model
can be expressed as

S(θ,λ) = m I1(θ)SI1(λ) + m I2(θ)SI2(λ) (4)

where the first term in the right hand side corresponds to the specular reflection
at the normal incident and the second corresponds to the grazing reflection at the
horizontal incident. It is noted that surface-spectral reflectance is constant over the



Spectral Reflectance Images and Applications 233

visible wavelength range at the grazing angle as SI2(λ) = Sc
I2. Therefore, Eq. (4) can

to be written as

S(θ,λ) = m I1(θ)SI1(λ) + m
′
I2(θ) (5)

wherem
′
I2(θ) = m I2(θ)Sc

I2. It is important to note that the observed spectral reflectance
can be expressed in a linear combination of the reflectance function at the normal
incidence and a constant reflectance.

3 Spectral Invariant Representation

This section briefly explains a spectral invariant representation for spectral images
[25, 26, 34, 35], which was limited to the standard reflection model for inhomoge-
neous dielectric objects, and then extend the invariant representation for all materials
including inhomogeneous dielectric and homogeneous metal.

Let us suppose that a spectral image is captured at ρ points in the visible range
[400, 700nm]. Let i and j be two different wavelengths (spectral bands) in the range.
From Eq. (3) of the standard reflection model, subtraction of one band from another
provides a reflectance representation, independent of specular highlight as

S(θ,λi ) − S(θ,λ j ) = (m
′
I (θ) + m B(θ)SB(λi )) − (m

′
I (θ) + m B(θ)SB(λ j ))

= m B(θ)SB(λi ) − m B(θ)SB(λ j )

= m B(θ)(SB(λi ) − SB(λ j )) (6)

where the interface reflection component m
′
I (θ) is eliminated. Moreover let l and n

be the two other wavelengths. Then the following ratio of two subtractions between
wavelengths can be illumination invariant, that is, invariant to highlight, shading,
and surface geometry by eliminating the remaining weighting coefficient m B(θ) [34,
35].

S(θ,λi ) − S(θ,λ j )

S(θ,λl) − S(θ,λn)
= m B(θ)(SB(λi ) − SB(λ j ))

m B(θ)(SB(λl) − SB(λn))

= SB(λi ) − SB(λ j )

SB(λl) − SB(λn)
(7)

Next, the reflection model of metal object is considered. The extended reflection
model in Eq. (5) is the same fashion mathematically as the standard model in Eq. (3)
for dielectric, although the two reflectionmodels are physically different. Therefore a
unified invariant representation is derived for all materials including inhomogeneous
dielectric and homogeneous metal. In fact, the following invariant equation can be
derived for metal from Eq. (5),
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S(θ,λi ) − S(θ,λ j )

S(θ,λl) − S(θ,λn)
= (m I1(θ)SI1(λi ) + m

′
I2(θ)) − (m I1(θ)SI1(λ j ) + m

′
I2(θ))

(m I1(θ)SI1(λl) + m
′
I2(θ)) − (m I1(θ)SI1(λn) + m

′
I2(θ))

= m I1(θ)SI1(λi ) − m I1(θ)SI1(λ j )

m I1(θ)SI1(λl) − m I1(θ)SI1(λn)

= m I1(θ)(SI1(λi ) − SI1(λ j ))

m I1(θ)(SI1(λl) − SI1(λn))

= SI1(λi ) − SI1(λ j )

SI1(λl) − SI1(λn)
(8)

where the geometric weighting coefficients m I1(θ) and m
′
I2(θ) in Eq. (5) are elim-

inated. It is noted that the operation of Eq. (8) results in an equivalent operation
to Eq. (7), which depends on only surface-spectral reflectance and is invariant to
highlights, shading, and geometries.

The above spectral operations based on subtraction and division provides math-
ematically simple and robust spectral invariant representations. However the above
computation depends on wavelengths such as λl and λn , and therefore, for real spec-
tral data it is unstable because the denominator includes the subtraction. The above
operation can be generalized to a stable form. Note that use of the minimum value of
spectral reflectance preserves the original spectral characteristics. Then an invariant
representation for spectral reflectance is defined as

S
′
(θ,λ) = S(λ) − minS(λ)√∫ λmax

λmin
(S(λ) − minS(λ))2dλ

(9)

For practical computation, let us sample spectral reflectance at ρ wavelengths in
the visible range [λmin,λmax ]. Then the discrete version of the invariant representa-
tion is written as

S
′
(θ,λi ) = S(θ,λi ) − min{S(θ,λ1), . . . , S(θ,λρ)}√∑ρ

j=1(S(θ,λ j ) − min{S(θ,λ1), . . . , S(θ,λρ)})2
,

(i = 1, 2, . . . , ρ) (10)

This representation is spectral invariant for all materials, including inhomoge-
neous dielectric and homogeneous metal. The observed spectral reflectance S(θ,λ)
can be reduced into a normalized surface-spectral reflectance S

′
(θ,λ) = S

′
(λ) that is

independent of the geometric parameter θ. This representation is useful as an invari-
ant operator for a variety of spectral image analysis, including material classification
and image segmentation.

Lemma 1 Assuming the standard dichromatic reflection model for inhomogeneous
dielectric materials, the normalized surface-spectral reflectance S

′
(θ,λ) is indepen-

dent of highlight, shading, surface geometry, and illumination intensity.
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Proof By substituting Eq. (3) in Eq. (10) we have Eq. (11), factoring out dependen-
cies on highlight, shading, surface geometry, and illumination intensity where the
geometric weighting coefficients m

′
I (θ) and m B(θ) in Eq. (3) are eliminated.

S
′
(θ,λi ) = m B(θ)SB(λi ) − min{m B(θ)SB(λ1), . . . ,m B(θ)SB(λρ)}√∑ρ

j=1(m B(θ)SB(λ j ) − min{m B(θ)SB(λ1), . . . ,m B(θ)SB(λρ)})2

= m B(θ)(SB(λi ) − min{SB(λ1), . . . , SB(λρ)})
m B(θ)

√∑ρ
j=1(SB(λ j ) − min{SB(λ1), . . . , SB(λρ)})2

= SB(λi ) − minSB(λ)√∑ρ
j=1(SB(λ j ) − minSB(λ))2

, (i = 1, 2, . . . , ρ) (11)

Lemma 2 Assuming the extended dichromatic reflection model for homogeneous
metal, the normalized surface-spectral reflectance S

′
(θ,λ) is independent of high-

light, shading, surface geometry, and illumination intensity.

Proof By substituting Eq. (5) in Eq. (10) we have Eq. (12), factoring out dependen-
cies on highlight, shading, surface geometry, and illumination intensity where the
geometric weighting coefficients m I1(θ) and m

′
I2(θ) in Eq. (5) are eliminated.

S
′
(θ,λi ) = m I1(θ)SI1(λi ) − min{m I1(θ)SI1(λ1), . . . ,m I1(θ)SI1(λρ)}√∑ρ

j=1(m I1(θ)SI1(λ j ) − min{m I1(θ)SI1(λ1), . . . ,m I1(θ)SI1(λρ)})2

= m I1(θ)(SI1(λi ) − min{SI1(λ1), . . . , SI1(λρ)})
m I1(θ)

√∑ρ
j=1(SI1(λ j ) − min{SI1(λ1), . . . , SI1(λρ)})2

= SI1(λi ) − minSI1(λ)√∑ρ
j=1(SI1(λ j ) − minSI1(λ))2

, (i = 1, 2, . . . , ρ) (12)

4 Spectral Image Segmentation

The segmentation problem of spectral images based on the illumination-invariant
representation is considered. Several algorithms have been proposed for segmenting
the spectral images into distinct surface areas [24, 74–76, 107, 108]. Xing et al. [108]
proposed a fast spectral image segmentation approach based on mean-shift filtering
and kernel-based clustering. An effective method was introduced by Martínez-Usó
et al. [76] for spectral image segmentation in fruit inspection applications. Haneishi
et al. [107] proposed a multispectral image segmentation method of paintings drawn
with natural mineral pigments using the kernel based nonlinear subspace based on
16-bands camera. However, those algorithmswere not always robust for the highlight
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and shading effects occurred for different surface materials, and required a careful
adjustment of the lighting position.

In this chapter, we use a segmentation algorithm “PCA+Ncut method” for mate-
rial classification using dimension-reduced spectral information which was imple-
mented in [24]. This method was used to execute the normalized cut [109] in a low-
dimensional space obtained with the principal components analysis. We use another
algorithm which was fundamentally based on the normalized cut approximated by
the Nyströmmethod [110] to incorporate both spectral information and spatial infor-
mation in Ref. [74]. Those methods were useful for material classification of printed
circuit boards. However thematerial classificationwas not illumination-invariant, but
was performed under the ideal lighting condition of eliminating specular reflection
and shadow.

Herewepresent an image segmentation algorithmcombinedwith the illumination-
invariant representation,which results in reliable segmentation results under arbitrary
lighting conditions. Our image segmentation process is composed of the following
four steps,

1. The surface-spectral reflectances are estimated from the camera outputs, and then
transformed into the invariant representation to highlight, shadow, and surface
geometry.

2. The similarity matrix between pixels is constructed in the normalized cut scheme.
3. The computation burden is reduced by the Nyström approximation.
4. The K-means algorithm is applied to cluster the leading normalized eigenvectors

to get the final segmentation.

4.1 Illumination Estimation

Here suppose that the illuminant spectrum E(λ) is estimated by such a method as
described in Sect. 4.2. Then the surface-spectral reflectance S(θ,λ) of an object is
obtained in a straightforward way using Eq. (15). Moreover the normalized spectral
reflectance S

′
(λ) for invariant representation is obtained from the transformation

of Eq. (10). The following spectral segmentation method is adapted to the invariant
representation for classifying each pixel to a specific object.

4.2 Similarity Matrix Construction

In the normalized cut scheme, a similaritymatrixW is constructed by all combination
of two pixels based on the input ρ-dimensional feature vector, which corresponds to
the illumination-invariant spectral reflectances. The similarityw(x, y) ∈ W between
two pixels x and y is defined as product of two similarity measures of the normalized
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spectral reflectance and the spatial location. Using the Gaussian kernel function to
represent the similarity measure,

w(x, y) = exp

{
−‖F(x) − F(y)‖22

σ2
S

}
· exp

{
−‖Z(x) − Z(y)‖22

σ2
Z

}
(13)

where F(x) ∈ [0, 1]ρ is the ρ-dimensional feature vector at pixel x , which corre-
sponds to the illumination-invariant spectral reflectances S

′
(λ). The function Z(x)

represents the spatial location that is effectively used to connect different regions
to a similar segment, and ranges from 0 to the tested image size. The vector norm
operator ‖.‖2 finds the Euclidean distance. The standard deviation σ represents the
sensitivity of the Gaussian distribution. The spectral sensitivity σS depends on the
materials appearance while the location sensitivity σZ depends on the size of tested
image.

4.3 Nyström Approximation

Exact normalized cut classification requires calculations of eigenvalues and eigenvec-
tors of the huge similaritymatrixW. TheNyströmmethod is a technique for finding a
numerical approximation to eigendecomposition, and it was widely applied to areas
involving large densematrices. In this algorithm, the Nyströmmethod is applied here
to approximate similarity matrix for reducing the computation burden; the method
estimates the eigenvalues and eigenvectors from a smaller matrix that is obtained
by sampling the original similarity matrix W. In this study, I select the m sam-
ples by K-means algorithm. From the m × m approximated similarity matrix, one
can derive the approximated eigenvectors matrix V of the similarity matrix W. The
largest k eigenvectors are selected from matrix V according to the required number
of k materials.

4.4 Eigenvectors Clustering

I use the k eigenvectors stacked in columns simultaneously to get the final clusters
for k objects. From the matrix V ∈ �L×k form matrix V̄ by renormalizing each of
V’s rows to have unit length [111] as

V̄i j = Vi j√∑
j V2

i j

, i = 1, . . . , L , j = 1, . . . , k. (14)
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where L is the number of pixels. By treating each row of the leading normalized
eigenvectors V̄ as a point in�k , we cluster them into k different objects via K-means
that attempts to minimized the distortion.

Finally, we assign the pixel S
′
i of the normalized spectral reflectance to cluster j if

and only if row i of the matrix V̄ was assigned to cluster j . Thus the input normalized
spectral reflectance data S

′
i (λ) of spectral images is assigned to different segments

to get the final segmentation.

5 Experimental Setting

5.1 Spectral Camera System

Figure3 shows an experimental setup of the spectral acquisition system. The main
components are a cooling monochromatic CCD camera (Retiga 1300) with 12-bit
dynamic range, a macro lens of C-mount connected directly to the camera, Liquid
Crystal Tunable Filter (LCTF), IR-cut filter, and personal computer. TheVariSpecT M

LCTF [112] is convenient for spectral imaging because the wavelength band can be
changed easily and electronically [23]. The LCTF used in this study has the spectral
properties of narrow band filtration of 10nm and wavelength range [400–700 nm].
The XY stage helps to easily control the camera system distance and position. The
rotating stage controls rotation and position of the measured object.

The imaging system automatically captures and saves spectral images with arbi-
trary number of bands and shutter speeds. The actual measurement time required
for capturing one spectral image with size 1280 × 1024 pixels for the area
35mm× 30mm and 31-bands of a printed circuit board (PCB) is 4.75 s. Figure4a
depicts a set of relative functions for representing the whole spectral sensitivities

Fig. 3 The experimental
setup of the spectral imaging
system [74]
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Fig. 4 Spectral characteristics of the imaging system: a whole spectral sensitivity functions; b
transmittances of the VariSpecTM LCTF [74]

that were obtained by combining the LCTF transmittances in Fig. 4b, IR-cut fil-
ter transmittances, and the spectral sensitivity function of the monochromatic CCD
camera.

5.2 Illumination Estimation

The estimation of scene illumination from image data is one of interesting topics in
image analysis and computer vision [31]. Although many algorithms were proposed
for scene illuminant estimation, most algorithms assumed uniform illumination from
a single light source [6, 113]. Concerning spectral imaging, illuminant estimation
methods from the outputs of a multi-channel vision system were presented [6, 7],
where the dichromatic reflection model was assumed to object surfaces. Therefore
the illuminant spectrum could be estimated from the interface reflection component.
Recently, a method for estimating the illuminant spectral-power distributions from
omnidirectional observations by a multi-channel omnidirectional imaging system
was proposed [114, 115].

An easy way to estimate the illuminant spectrum is to place a standard white
reference in a scene and capture the corresponding sensor outputs from the spectral
image of the scene. The sensor outputs are described as

∫ 700
400 E(λ)Ri (λ)dλ (i =

1, 2, . . . , 31), where E(λ) is the illuminant spectral-power distribution (SPD), and
Ri (λ) is the i th sensor spectral sensitivity function in Fig. 4a. When the spectral
sensitivities R(λ) are narrow, the illuminant is estimated directly from the sensor
outputs. This method is utilized in inspection systems for industrial application.

Here suppose that the illuminant spectrum E(λ) is estimated by such a method
as described in the above. Then the surface-spectral reflectance S(θ,λ) of an object
is obtained in a straightforward way from the sensor outputs Y (θ,λ1), Y (θ,λ2), . . . ,
Y (θ,λ31) as
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S(θ,λ) = Y (θ,λi )∫ 700
400 E(λ)Ri (λ)dλ

, (i = 1, 2, . . . , 31). (15)

The sensor output at each wavelength in Eq. (15) is normalized with a factor
on illuminant and sensing sensitivity. Thus, the spectral reflectance is recovered by
eliminating the lighting and sensing effects from the sensor outputs.

6 Experiments

6.1 Experiments for Spectral Invariant

A test scene including a metal object of copper and two dielectric objects of
ceramic (cup) and plastic (frog) is used. Figure5a shows the color image of the orig-
inal surface-spectral reflectances, which was obtained using the CIE-color matching
functions to the observed reflectance S(θ,λ). It is noted that the scene has the illumi-
nation effects of shadows and highlights observed over different parts on the object
surfaces. From this scene I obtained a set of spectral reflectance images with the
size of 439 × 297 × 31. Figure5b shows the spectral invariant representation of
the normalized spectral reflectance. Shadows, highlights, and surface geometry are
much reduced in the invariant representation of both dielectric objects and metal
object. For detailed inspection, Fig. 5c depicts a 3D view of the component image
of spectral reflectance at 550nm for a small rectangular area including metal and
dielectrics. The observed reflectance S(θ,λ) is strongly influenced by shading and
illumination effects. Figure5d shows the 3D view of the transformed invariant spec-
tral reflectances S

′
(θ,λ) = S

′
(λ) for the samepart at 550nm. Shadows and highlights

disappear from the test part, so that the transformed spectral image depends on only
the inherent spectral reflectance to each object surface. Therefore, the image is clearly
segmented into two different material regions. Thus, the presented spectral invariant
representation is valid for both dielectric and metal objects, and is much more robust
under a variety of illumination effects than the observed reflectance data.

In order to confirm the effectiveness of the spectral invariant, the invariant repre-
sentation is compared with a representative technique proposed by Tominaga [116].
This technique normalizes the deviation vectors using a constant average value to can-
cel out the geometric factors. The method was used for dielectric materials. Figure6
shows the representation by this normalization technique. It is noted that using a con-
stant average value affects the performance of the normalization result specially the
background and this will affect the spectral image segmentation. The strong shadows
still affect the results as shown in the small rectangular area. The edge between two
materials is not so sharp, compared with Fig. 5d. However, I note that the highlights
from themetal object surface are removed. Therefore, the conventional technique can
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Fig. 5 Invariant evaluation for spectral reflectance image including dielectric and metal objects:
a color image of the original spectral reflectances; b spectral invariant representation; c 3D view
of the component image of spectral reflectance at 550nm for a small area including metal and
dielectrics; d 3D view of the transformed illumination-invariant spectral reflectances for the same
part at 550nm [25]

be extended to remove the illumination effects from the observed spectral reflectance
image for metal objects as well as dielectric objects.

To show the stability of the illumination-invariant representation, Fig. 7 shows
the invariant representation produced by subtraction of the spectral reflectances as
in Eq. (8) using two different sets of wavelengths. The results are invariant to high-
lights, shading, and geometries for both metals and dielectric objects. However, the
boundary between two materials is not clear, and the segmentation fails. Thus the
invariant is unstable and depends on wavelengths. This shows the important result
that, using the minimum value of spectral reflectance by the invariant representation
in Eq. (9) preserves the original spectral characteristics and thus improves material
segmentation.
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Fig. 6 Invariant
representation by the
normalization technique
[116] and the relevant 3D
view for a small area at
550nm
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Another spectral image including ametal object and two dielectric objects of plas-
tic is tested to confirm the effectiveness of the presented spectral invariant. Figure8a
shows the color image of the original surface-spectral reflectances. The image has
the illumination effects of shadows and highlights. Figure8b shows the color image
of the presented invariant representation. We note that shadows, highlights, and sur-
face geometry are much reduced in the invariant representation of both the dielectric
objects and the metal object.
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Fig. 7 Invariant representation produced by Eq. (8): a using the wavelengths of 450, 500, 550, and
600nm; b using the wavelengths of 550, 600, 650, and 700nm [26]

Fig. 8 Invariant evaluation for spectral reflectance image including dielectric and metal objects:
a color image of the original spectral reflectances; b color image of the presented invariant repre-
sentation [25]

6.2 Experiments for Spectral Image Segmentation

Theperformanceof the illumination-invariant based segmentation algorithm is exam-
ined for the spectral images of natural scenes containing metal and dielectric objects.
The spectral imaging system shown in Fig. 3a is used to perform these experiments.
Nature scenes spectral images are captured under arbitrary lighting conditions. First
we used the same spectral reflectance image as in Fig. 5. Figure9a is the original
image of a copper object and two dielectric objects. Figure9b depicts the ground truth
of material classification by segmenting manually the image. Figure9c shows the
segmentation result by the previous algorithm using the original spectral reflectance
data [74]. The result contains many shadows and highlights effects. Figure9d shows
the segmentation result by the presented algorithm based on the normalized spec-
tral reflectance data. The image is clearly segmented into different material regions
and background. Thus the presented segmentation algorithm is independent of the
illumination effects of highlight and shadow, and the geometry of object shape.

In order to confirm the effectiveness of the illumination-invariant representa-
tion, two alternative methods were also examined. Although I tried several different
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Fig. 9 Evaluation of image segmentation for natural objects: a original image;b ground truthmanu-
ally segmented; c segmentation result based on the original spectral reflectance data; d segmentation
result based on the normalized spectral reflectance data

parameter settings in eachmethod, only the best results are shown for the comparison
in this chapter. First, the K-means classification method [117] was used to segments
the spectral images in Fig. 9a by clustering the original spectral reflectance data in
the spectral space using random seeds, wherein the number of clusters was set to
4. The result is shown in Fig. 10a. Second, the PCA+Ncut method [24] was used
to execute the normalized cut in a low-dimensional space obtained with the princi-
pal components analysis. The segmentation result of clustering the original spectral
reflectance data is shown in Fig. 10b.We should note that the both results are strongly
affected by different illumination events on the objects surfaces. On the other hand,
Fig. 10c, d show the segmentation results by the K-means and the PCA+Ncut meth-
ods, respectively, based on the illumination-invariant representation. The image is
well segmented into different material regions and background, compared with the
results in Fig. 10a, b.

Next, the presented segmentation algorithm is applied to material classification
of a printed circuit board with various tiny elements. A raw circuit board surface
layer is composed of various elements, which are a mixture of different materials
including dielectrics (i.e. photo-resist, silk-screen print, and substrate) and metals
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Fig. 10 Segmentation results by using two alternative segmentation methods: a K-means [117] of
the original spectral reflectance data; b PCA+Ncut [24] of the original spectral reflectance data;
c K-means of the normalized spectral reflectance data; d PCA+Ncut of the normalized spectral
reflectance data

(i.e. copper), as shown in Fig. 11. I used a part of a real circuit board. Figure11a
shows the color image of the original spectral reflectance data. The board is illumi-
nated by one light source from the left direction. The size of the captured spectral
image by our imaging system is 433 × 363 × 31. Figure11b depicts the ground
truth of material classification by segmenting manually the image. The ground truth
image consists of four segments such as white—silk-screen print, yellow—metal,
green—resist-coated metal, and black—background (substrate). Figure11c shows
the material classification result based on the original spectral reflectance data with
the illumination effects. I found that miss classification occurs around metal and
resist-coated metal lines at the left side of the segmented image. This can be caused
by specular reflection of these materials surfaces. Figure11d shows the classifica-
tion result based on the normalized spectral reflectance data without the illumination
effects. The original scene is well segmented into four material regions.

Then, this chapter compare the material classification method based on the
illumination-invariant representation, with the material classification method based
on the estimated spectral reflectance at every pixel point. Figure12a shows the color
image of the original spectral reflectance data for a board illuminated by one light
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Fig. 11 Material classification of a raw printed-circuit board: a color image of the original spectral
reflectances; b ground truth image; c classification result based on the original spectral reflectance
data; d classification result based on the normalized spectral reflectance data

source from the left direction. Figure12b shows the color image of the original
spectral reflectance data for the same board illuminated by two light sources from
the left and right directions. The classification results based on the illumination-
invariant representation and the estimated spectral reflectance of the spectral images
in Fig. 12a, b are shown in Fig. 12c, d, respectively. It is noted that the original scene
is well segmented into four material regions based on the invariant representation.

The accuracy of the segmentation results between the segmented image and the
ground truth image is numerically demonstrated by two different measures. First, the
similarity measure with the window size 16 × 16 is used for labeled images shown
in [118]. The similarity measure is calculated based on binary relations of arbitrary
pixels in the labeled images. Thus this measure can evaluate both area-based labeled
images and pixel-based labeled images for the segmented color images. Second, a
pixel by pixel comparison is used to calculate the segmentation quality numerically
for the whole regions using Eq. (16).
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Fig. 12 Material classification of a rawprinted-circuit board:a spectral imageof a board illuminated
by one light source from the left direction; b spectral image of the same board illuminated by two
light sources from the left and right directions; c classification result based on the illumination-
invariant representation; d classification result based on the estimated spectral reflectance

Quali t y rate = Correct classi f ied pi xels

T otal number of pi xels
(16)

Tables1 and 2 list the numerical accuracy of segmentation results for the natural
scene and the circuit board images. The accuracy using the similaritymeasure and the
quality rate show that the segmentation results based on the presented illumination-
invariant representation achieve high accuracy for both natural scene and circuit
board scenes, compared with the segmentation results using the original spectral
reflectance data and the estimated spectral reflectances. Table3 shows that the mate-
rial classification based on the illumination-invariant representation is more accurate
than the material classification based on the estimated spectral reflectance.
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Table 1 Accuracy of segmentation results for the natural scene

Method and representation Similarity measure (%) Quality rate (%)

Algorithm using the original 95.76 95.26

spectral reflectance data

Algorithm using the
normalized

98.03 97.90

spectral reflectance data

K-means using the original 91.86 79.80

spectral reflectance data

K-means using the normalized 93.85 92.64

spectral reflectance data

PCA+Ncut using the original 92.11 90.26

spectral reflectance data

PCA+Ncut using the
normalized

94.11 93.87

spectral reflectance data

Table 2 Accuracy of classification results for the circuit board in Fig. 11

Method and representation Similarity measure (%) Quality rate (%)

Algorithm using the original 86.02 91.51

spectral reflectance data

Algorithm using the
normalized

98.77 99.18

spectral reflectance data

Table 3 Accuracy of classification results for the circuit board in Fig. 12

Method and representation Similarity measure (%) Quality rate (%)

Algorithm based on the 98.81 99.20

illumination-invariant
representation

Algorithm based on the 96.63 98.03

estimated spectral reflectance

7 Summary

The present chapter has presented an illumination-invariant representation of spectral
images which can be applied to dielectric and metal objects. The invariant represen-
tation was derived from the standard dichromatic reflection model for dielectric and
the extended dichromatic reflection model for metal. It is shown that normalized
surface-spectral reflectance by the minimum reflectance is illumination-invariant,
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that is independent of geometric parameters. The presented invariant representa-
tion is applied to image segmentation problems based on spectral information. An
illumination-invariant segmentation algorithm was presented for effectively seg-
menting spectral images of a natural scene and a raw circuit board. Experimental
results showed the feasibility of the presented illumination-invariant representation
method in image segmentation with high accuracy. The invariant representation was
also applied to other alternative segmentation algorithms to verify the performance.
Thus, we can conclude that the illumination invariant representation and the segmen-
tation method are useful for segmenting various kinds of materials.
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Image Segmentation Using an Evolutionary
Method Based on Allostatic Mechanisms

Valentín Osuna-Enciso, Virgilio Zúñiga, Diego Oliva,
Erik Cuevas and Humberto Sossa

Abstract In image analysis, segmentation is considered one of the most important
steps. Segmentation by searching threshold values assumes that objects in a digital
image can be modeled through distinct gray level distributions. In this chapter it is
proposed the use of a bio-inspired algorithm, called Allostatic Optimisation (AO),
to solve the multi threshold segmentation problem. Our approach considers that an
histogram can be approximated by a mixture of Cauchy functions, whose parameters
are evolved by AO. The contributions of this chapter are on three fronts, by using: a
Cauchy mixture to model the original histogram of digital images, the Hellinger dis-
tance as an objective function, andAO algorithm. In order to illustrate the proficiency
and robustness of the proposed approach, it has been compared to the well-known
Otsu method, over several standard benchmark images.
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1 Introduction

Image segmentation is considered as an important operation for meaningful analy-
sis and interpretation of images acquired. In particular, image segmentation aims
to group pixels within meaningful regions. Commonly, gray levels belonging to
an object, are substantially different from those featuring by other objects or by
the background. Segmentation is typically conducted considering two main criteria:
similarity of image regions and discontinuity between adjacent disjoint regions [1,
2]. Among the segmentation approaches based on similarity, thresholding is consid-
ered the simplest technique [3, 4]. It involves the basic assumption that the objects
and the background in the digital image have distinct gray level distributions. Under
such assumption, the gray level histogram contains two or more distinct peaks and
threshold values separating them that can be obtained. Therefore, segmentation is
performed by assigning regions having gray levels below the threshold to the back-
ground, and assigning those regions having gray levels above the threshold to the
objects, or vice versa. Segmentation by thresholding has been used in several areas
where a correct separation of the objects in images is a vital step to perform fully
automatic vision systems for detection and classification such as medical imaging
[5–11], aviation [12], spacecraft imagery [13] and nondestructive tests [14], among
many other applications. Several thresholding segmentation approaches have been
reported in the literature [15–20], being the most popular the Otsu [21] method.

In statistics, the Gaussian distribution [22] is a standard modeling tool which
satisfies the central limit theorem. A Gaussian distribution assumes that the proba-
bility of any occurring value falls off rapidly as it is moved further away from the
central value. However, several problems, such as those that involve the presence
of several outliers in the population, cannot be appropriately modeled under such
assumption. Similar to the Gaussian distribution, the Cauchy distribution [23] is a
symmetric bell-shaped density function but with a greater probability mass in the
tails. This fact allows that the probabilities of points with large deviations from the
central value, such as outliers, do not drop off as precipitously as it is obtained by the
Gaussian distribution [24]. Although the Cauchy distribution possesses better mod-
eling capabilities (in presence of outlier data) than other distributions, it presents
serious difficulties in estimating its behavior parameters [25]. The capacity of the
Cauchy distributions to model complex process has been demonstrated in several
engineering applications such as impulsive noise cancellation [26], image denoising
algorithms [27, 28], among others.

In this work, the segmentation algorithm is based on a parametric model which
groups a mixture of several Cauchy density functions (Cauchy mixture, CM). CM
involves the model selection, i.e., to determine the number of components in the
mixture, and the estimation of the parameters of each component in the mixture
that better adjust the statistical model. In general, computing the parameters of each
Cauchy function is considered a difficult task, sensible to the initialization [29–31]
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and full of possible singularities [32]. In order to calculate such parameters, several
methods have been proposed in the literature [33–35], presenting most of them flaws
such as high computational overhead and sub-optimal values as a result of getting
trapped in a local minimum. In the proposed approach, the parameter estimation of
the CM has been faced as an optimization problem.

On the other hand, an impressive growth in the field of biologically inspired
evolutionary algorithms for search and optimization has emerged during the last
decade. Several bio-inspired algorithms have been proposed in the literature. Some
examples include methods such as the Evolutionary Algorithm (EA) proposed by
Fogel et al. [36], De Jong [37], the Genetic Algorithms (GA) proposed by Holland
[38], the Artificial Immune System proposed by De Castro and Von Zuben [39] the
Particle SwarmOptimization (PSO)method proposed by Kennedy and Eberhart [40]
and the Artificial Bee Colony (ABC) proposed by Karaboga [41].

The interesting and complex behavior of biological organs from the human body
have fascinated and attracted the interest of researchers for many years. Biologists
have studied these phenomena to model organ operations, and engineers applied
these models as a framework for solving complex real-world problems. An impor-
tant biological phenomenon is Allostasis which explains how the modifications of
specialized organ conditions inside the body allow achieving stability when an unbal-
ance health condition is presented. Therefore, if a body decompensation happens,
according to the allostatic mechanisms, several set points compound by blood pres-
sure, oxygen tension and others indexes are proved in order to get a stability state.
Such set points are generated by using different specialized mechanisms.

In this chapter, amulti-thresholding segmentation algorithmbased on a newevolu-
tionary algorithm called Allostatic Optimization (AO) is presented. In the approach,
the segmentation process is considered as an optimization problem by approximat-
ing the 1-D histogram of a given image in terms of a Cauchy mixture model, whose
parameters are calculated through the AO algorithm. In AO, the searcher agents emu-
late different body conditions which interact to each other by using operators based
on the biological principles of the allostasis mechanism. The proposed approach
encodes the parameters of the CM as an individual. An objective function by using
the Hellinger distance evaluates the matching quality between the CM candidate
and the original histogram. Guided by the values of this objective function, the set
of encoded candidate mixtures are evolved using the operators defined by AO so
that they can fit into the original histogram. In order to illustrate the proficiency
and robustness of the proposed approach, it has been compared to the well-known
Otsu method. The comparison examines several standard benchmark images that
are commonly considered within the literature. Experimental results show a high
performance of the proposed method for searching appropriate threshold values in
terms of accuracy and robustness.
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2 Allostatic Optimization

2.1 Allostasis

Organ systems (OS) into the body are composed of organ groups working in coor-
dinated ways in order to maintain vital functions [42]; the human being has eleven
of such systems, and each one is responsible to perform several specialized tasks as
can bee seen in Table1.

Even though there are other forms to describe the body organization, in the expla-
nation given next it is only considered the organization based onOS. Communication
among cells belonging to different OS with the brain it is achieved by means of two
systems: the nervous and the endocrine, who are responsible of the coordination
among OS for regulation of each essential function inside the body. Once the brain
detects some external or internal change (stress, pollution, social status, disease, etc.),
it determines if the stability of the body is compromised, in whose case it uses those
channels to communicatewith the adequateOS, trying to copewith such perturbation
in order to get again the stability of the body. Chemical messages from the endocrine
system are sent through hormonal substances, which are in charge of triggering or
inhibiting responses from several tissues through target cells (who usually belong to
several OS), whereas the nervous systems mainly uses electrical messages, activated

Table 1 Organ systems in the body

No. Organ system Task(s) Some elements

1 Integumentary External protection,
sensory receptors

Skin, hair

2 Skeletal Internal protection of
tissues and organs

Bones

3 Muscular External and internal
movements

Muscles

4 Circulatory Carrying vital substances Heart, blood vessels

5 Respiratory Control and regulation of
the breathing process

Lung, nose

6 Digestive Turn substances in energy
to cells

Stomach, intestines

7 Excretory Disposal of wastes Kidney

8 Lymphatic Internal protection against
toxins and substances

T-cells, B-cells

9 Reproductive Sexual reproduction Testicles, ovaries

10 Nervous First communication
center

Neurons, Nerves

11 Endocrine Second communication
center

Pituitary, hypothalamus
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through neurotransmitters, also hormones, or a combination of them. Both chemical
and electrical messengers are referred simply as mediators. One of the main theories
that explains how the body achieves the stability of the body, or health, as well as
the coordination with the different OS, it is called ‘homeostasis’, which means ‘to
maintain stability (of a system, organ, OS, condition, health, etc.) through constancy
(of a determined mechanism’s set point (SP))’ [43–51]. Among the several types of
homeostasis are counted: of glucose, intestinal, of immunologic resources, of lipids,
of cholesterol, of zinc, of energy, pulmonary, of epidermis, of blood pressure, etc
[42].

Let’s consider the bloodpressure of a personbeing sit: at such amoment, according
to the homeostatic theory, one mechanismmaintains the blood pressure into stability,
by keeping up a SP inside of a narrow range (around of 10 beats/min in healthy
people). As the hypothetical person is standing up, there is a difference between the
actual SP and the required SP of blood pressure of a standing person, due simply
to the gravity force; in other words, there is no stability of blood pressure. As the
brain detects this instability, also starts sending signals (Mediators) to the related
mechanism through the communication channels (Nervous and Endocrine systems),
in order to activate the adequate response from the tissues involved (to increase the
heart bumping, in this example changed to a new SP).

The problembeing solved has only one liberty degree. In otherwords, it is required
to find only one SP, and this must be inside a narrow margin. The homeostatic model
has demonstrated its utility in medicine [43, 44]; however, in some cases that model
is not enough to explain neither complex behaviors of OS in the body, nor even
some disease patterns, and therefore medical prescriptions homeostasis-based tend
to fail. By considering such a problem it was proposed an alternative model who is
called allostasis, that means ‘to maintain stability (of a system, organ, OS, condition,
health, etc.) through change (of several mechanisms)’ [51]; in this case, and different
to the homeostasis model, are taken in account several SPs of mechanisms and the
non-linear relationships among mediators, OS and the brain. A simple example of
allostasis is shown in Fig. 1.

The fundamental difference between this model and the homeostasis is the exis-
tence of several SPs in several mechanisms involved in returning to stability. As can
be seen from Fig. 1, some SPs are increased whereas other are decreased; moreover,
there are relationships among mechanisms, mediators, other mechanisms, as well
as OS, which are not fully understood by scientists working at medical areas [51].
Prior to the explanation of the proposed computational algorithm, it is important
to consider both a standard vocabulary and considerations. For instance, we will
consider that the communication groups of OS are Group A. In the computational
algorithm we consider only three groups of mediators, even though that could exist
more in natural allostasis; those groups are called Groups B1, B2 and B3, or simply,
Group B. Both groups, A and B, are responsible of coordination between brain and
mechanisms that directly changes the appropriated SPs that could cope with the per-
turbation found; also, we argue that those groups contain different versions of SPs
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Fig. 1 Allostasis, a simple illustration scheme

(in hormonal as well as other kind of signaling means) historically used. In other
words, we say that Groups A, B, and mechanisms, are different forms of SPs used
in the past. By considering the aforementioned, in allostasis, the generation of new
SPs is done by using the SPs historically used [49]. Whereas SPs of Group A do
not suffer collective changes, those contained in Group B are constantly modified
by collective operations. In order to generate new SPs, allostasis considers several
procedures, being the main the so called ‘combination’ [52], which combines infor-
mation of Groups A, B, and random variations. Once a new SP is generated, it is
evaluated its capacity to reach a stable state, and whether the new SP improves the
stability provided by the actual SP, a collective change is carried out over all elements
contained in Group B [47, 48, 50].



Image Segmentation Using an Evolutionary … 261

2.2 Allostatic Optimization Algorithm

The computational approach of allostasis is called Allostatic Optimization (AO),
which implements operations that resembles the interaction rules modeled by the
mechanism of allostasis. In the algorithm, each candidate solution within the search
space represents a SP vector, whereas the fitness value equals to a degree of stability
(or allostasis) of each SP. The population of candidate solutions correspond to stored
SPs in natural allostasis. The optimum candidate solution corresponds to the whole
stability, or simply, stability. Finally, we consider a perturbation as a function of the
difference between the allostasis and the stability; such a function it is called err in
this chapter.

Also, the AO defines several operators, as the combination operation, which is
considered the main operator and is applied over all individuals of the population.
Other operators called collective (group operators: B1, B2 and B3) are also imple-
mented in AO, and they affect only a group of elements. Following the biological
model of allostasis, the AO approach divides the entire population in four different
groups: Group A, group B1, group B2 and group B3. The elements of group A are
only modified by the combination operator whereas the elements of groups B1, B2
and B3 are affected by the combination operator and other collective operations.
Even though in the natural process each group could have different sizes, in the com-
putational approach we consider the size of each group as one fourth of the entire
population. Thus, the population size must be selected in such a way that it can be
entirely divided by four (20, 40, etc.).

2.3 Description of the AO Algorithm

The AO algorithm starts by initializing the population randomly (candidate random
solutions or SPs) and later, the evolutionary process acts as follows: The combination
operator is applied to the first individual (SP) of the population, obtaining in such
a way a new individual. Whether the new individual is better than the original one
according to their allostasis (fitness value), the original individual is replaced by the
newonewhereas the groupsB1,B2 andB3 aremodified used collective operators.On
the other hand, if the original individual is better than the new individual, no changes
are executed to the population. An iteration is completed when the combination
operator has been applied to the last individual. This procedure is applied until a
termination criterion is met (i.e. the iteration number NI). Following the evolution
process of AO, the following operators are employed:
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1. Initialization.
2. Combination.
3. Collective B1.
4. Collective B2.
5. Collective B3.
6. Update the best element.

and the pseudo code of the proposal is

AO algorithm

1 Initialize S and determine its allostasis,

divide S in groups A and B

2 while (criterion){

for i=1 to Ns {

Generate new individual snew

by using the combination operator

if f(snew)<f(si){

if f(snew)<f(sbest){

Calculate e and m

Modify B1 by using collective operator B1

Modify B2 by using collective operator B2

Modify B3 by using collective operator B3

sbest=snew; f(sbest)=f(snew);

}

si=snew; f(si)=f(snew);

}

}

}

Next, each operator is defined.

Initialization

In the first part, the algorithm initializes a population S of Ns set point vectors
(S = {s1, s2, . . ., sNs}), where each set point (SP) si is a D-dimensional vector con-
taining parameter values to be optimized. Such values are randomly and uniformly
distributed between the pre-specified lower initial parameter bound slow

j and the upper

initial parameter bound shigh
j :

sij = slow
j + rand () ·

(
shigh

j − slow
j

)
; i = 1, . . ., Ns; j = 1, . . ., D (1)

with i and j being the individual and parameter indexes, respectively. Hence, sij is
the j th parameter of the i th individual. After initialization of SPs, it is found the best
individual from the population, e.g.
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Fig. 2 The combination operator

sbest∈ {
S| f

(
sbest

) = min( f (s1) , f (s2) , . . ., f (sNs))
}

(2)

where f (.) represents the cost function.

Combination

In allostasis, this operation combines each SP in the population, with information
provided by other SPs. In this work, such effect is simulated by using a single
operation of mutation, by replacing information of an original individual si with
information extracted from other sBc, obtaining in such a way a new individual
snew, who combines information from both individuals. In order to implement this
operator, two different integers are randomly generated, Bc inside the number of SPs
(1, . . ., Ns) and d inside the dimension number (1, . . ., D). The combination takes
place substituting the element sdi from the original si with the element sdBc from
the element sBc. Therefore, the only difference between si and sBc is the element
in the position d. Figure2 shows graphically the combination operation. Once the
new individual snew is generated by using the combination operator, it is compared
whether such individual is better than the original one si and also the best found to
far sbest , according to their fitness values. If snew is better, the elements si as well as
sbest are replaced by snew, whereas the groups B1, B2 and B3 are modified used the
collective operators. However, if si is better than snew, no changes are executed to
the population.
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Collective B1

This operator modifies only the elements of group B1, namely SPs from (Ns/4) + 1
to 2·(Ns/4). In the allostasis mechanism, SPs from Group B1 are substituted by
similar versions of the average answer produced by the entire set of SPs. In the AO
approach, the average answer a = {a1, . . ., aD} is computed as:

a j =
(

1

Ns

)
·

Ns∑

i=1

sij; j = 1, . . ., D (3)

The modification, applied to each element, depends on the existent difference
between snew and sbest . Such relationship, defined as m, is calculated by using:

m = ψ

[
1.1 − 1

eψ ·err

]
(4)

where ψ ∈ [0.01, 1.5] and err = ((
f (snew) − f (sbest)

)
/
(

f (snew) + f (sbest)
))

Therefore, the SPs of group B1 are updated according to:

sg1, j = a j − m + 2·m·rand () (5)

where j∈ {1, . . ., D}, g1∈ {(
Ns
4

) + 1,
(

Ns
4

) + 2, . . ., 2· (Ns
4

)}
and rand( ) is a number

randomly generated between 0 and 1.

Collective B2

According to the allostasis mechanism, elements of group B2 are replaced by SPs
randomly generated inside the average answer. Such effect is simulated modifying
the elements of group B2 according to the following model:

sg2, j = a j ·rand () (6)

where g2∈ {
2· (Ns

4

) + 1, 2· (Ns
4

) + 2, . . ., 3· (Ns
4

)}
.

Collective B3

Following the allostasis model, SPs of Group B3 are replaced by those who
have demonstrated to be successful when a similar decompensation has hap-
pened. Such a behavior is emulated producing perturbed versions of the best SP
sbest = {

sbest
1 , sbest

2 , . . ., sbest
D

}
found so-far. Thus, the elements of group B3 are mod-

ified by using:
sg3, j = sbest

j − m + (2·m·rand ()) (7)

where g3∈ {
3· (Ns

4

) + 1, 3· (Ns
4

) + 2, . . ., Ns
}
.
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Update the Best Element

In order to update de best SP sbest seen so-far, the best found individual from the
current population sbest,k is compared with the best individual sbest,k−1 of the last
generation. If sbest,k is better than sbest,k−1 according to their fitness values, sbest is
updated with sbest,k , otherwise sbest remains without changes. Therefore, sbest stores
the best historical SP found so-far.

3 Parametrical Model

3.1 Histogram Approximation by Using a CM

Let consider an image holding L gray levels [0, . . . , L − 1]whose distribution is dis-
played within the histogram h(g). In order to simplify the description, the histogram
is normalized just as a probability distribution function, yielding:

h(g) = ng

N
, h(g) ≥ 0, N =

L−1∑

g=0

ng, and
L−1∑

g=0

h(g) = 1, (8)

where ng specifies the number of pixels with gray level g, whereas N represents
the total number of pixels contained in the image. The image histogram can thus be
approximated by a CM of the form:

p(x) =
K∑

i=1

Pi · pi (x) =
K∑

i=1

Pi

[
γi

2

(x − ρi )
2 + γi

2

]
(9)

where Pi is the a priori probability of class i , pi (x) is the probability distribution
of gray-level random variable x in class i , ρi and γi are the location and the scale
parameter of the i th Cauchy distribution and K is the number of classes contained
in the image. In addition, the constraint

∑K
i=1 Pi = 1 must be satisfied.

In the proposed approach, the parameters (Pi , ρi , γi , i = 1, . . . , K ) of the CM
are encoded in an individual (a possible candidate solution). In order to correctly
evaluate the matching quality between a candidate CM and the original histogram,
the Hellinger distance E [53] is used. Such distance is defined as follows:

E =
√√√√

L∑

j=0

[√
p(x j ) − √

h(x j )
]2

(10)
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where p(x j ) is the probability defined by the candidate CM, in the gray level point
x j whereas h(x j ) represents its respective histogram value. Therefore, Eq.10 is the
objective function used by the AO algorithm to assess the quality of each individual.

Once obtained the best histogram approximation by a CM, the next step is to
determine the optimal threshold values.At first, the location parameters are organized
such as ρ1 < ρ2 < · · · < ρK ; then, the threshold values are calculated by estimating
the overall probability error for two adjacent Cauchy functions:

E(Ti ) = Pi+1 · E1(Ti ) + Pi · E2(Ti ), i = 1, 2, . . . , K − 1 (11)

considering

E1(Ti ) =
Ti∫

−∞
pi+1(x)dx, and E2(Ti ) =

∞∫

Ti

pi (x)dx (12)

E1(Ti ) is the probability of mistakenly classifying the pixels in the (i + 1)th class
belonging to the i th class, while E2(Th) is the probability of erroneously classify-
ing the pixels in the i th class belonging to the (i + 1)th class. Pi

′s are the a-priori
probabilities within the combined probability density function, and Ti is the thresh-
old value between the i th and the (i + 1)th classes. The Ti value is chosen as to
minimize the error E(Ti ). By differentiating E(Ti ) with respect to Ti and equating
the result to zero, it is possible to use the following equation to define the optimum
threshold value Ti :

AT 2
i + BTi + C = 0 (13)

where

A = γ 2
i − γ 2

i+1 (14)

B = 2 · (ρiγ
2
i+1 − ρi+1γ

2
i ) (15)

C = (γiρi+1)
2 − (γi+1ρi )

2 + 2 · (γiγi+1)
2 · ln

(
γi+1Pi

γi Pi+1

)
(16)

From Eq.13, it is only considered the solution whose value is positive and falls
inside the valid interval. Figure3 shows the determination process of threshold points,
considering only two consecutive Cauchy functions.
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Fig. 3 Determination of the
threshold points

3.2 Otsu’s Method

This method is a nonparametric technique for thresholding segmentation proposed
by Otsu [21] that employs the maximum variance value of the different classes as a
criterion to segment the image. In this approach the image histogram h(g) is divided
in m threshold values T = {T1, . . . , Tm−1}, considering T0 = 0 and Tm = L . Each
i-partition of m is defined as:

Ci = {g|g ∈ (1, . . . L − 1), Ti−1 < g < Ti }, i = 1, . . . , m (17)

Such values are calculated as follows:

q1 =
T1∑

i=0

h(gi ), μ1 =
T1∑

i=0

h(gi ) · i

q1
, σ 2

1 =
T1∑

i=0

(i − μ1)
2 · h(gi )

q1
(18)

qi =
Ti+1∑

Ti +1

h(gi ), μi =
Ti+1∑

Ti +1

h(gi ) · i

qi
, σ 2

i =
Ti+1∑

Ti +1

(i − μi )
2 · h(gi )

qi
(19)

where i = 1, . . . , m − 1. Therefore, the variance for the K -class is computed fol-
lowing the model:

σ 2
WC =

K∑

j=1

q j · σ 2
j (20)
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In order to find the threshold values, Eq.21 must be minimized:

σ 2
WC(T ∗

1 , . . . , T ∗
K ) = min

0≤T1≤···≤TK ≤L−1
σ 2

WC(T ∗
1 , . . . , T ∗

K ) (21)

The Otsu method is considered the most popular segmentation algorithm with
respectable results. Nevertheless, if the number of threshold values increases, the
number of function evaluations increases. Such fact is considered its main drawback.
Due to its wide popularity, the Otsu algorithm is used for comparing the performance
of the approach proposed in this chapter.

4 Experimental Results

In the proposed approach, the parameters of the CM are encoded as an individual.
An objective function by using the Hellinger distance evaluates the matching quality
between the CM candidate (individual) and the original histogram. Guided by the
values of this objective function, the set of encoded candidate mixtures are evolved
using the operators defined by AO so that they can fit into the original histogram.

In this section, several experiments have been conducted considering different
classes. Since each Cauchy function is defined by three parameters (P, ρ, γ ), each
individual l will have 3xK dimensions, if K different classes would be considered
[Pl

1, ρ
l
1, γ

l
1, . . . , Pl

K , ρl
K , γ l

K ]. Table2 shows the general parameters utilized by AO.
All the experiments are performed on a desktop computer with Intel® Core i7-2600
3.4GHz, 8GB of RAM and programmed in Matlab® 7.13.0.

Table 2 Parameters used in AO

Parameter Value Observations

L 256 Number of gray levels

Np 90 Population size

Nmax 200 Maximum number of iterations

xhigh
l L − 1 Higher limits of candidate l

xlow
l 0 Lower limits of candidate l

K [2, 7] Number of classes to find

T K − 1 Number of thresholds to find

Ψ 0.03 Tuning parameter of AO
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In order to demonstrate the performance of the proposed algorithm, several
images extracted from the Berkeley and the All-IDB databases [54, 55] have been
used. Figures4, 5, 6, 7, 8 and 9 present the experimental results after applying the
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Fig. 4 Image 233, a class distribution with seven classes (K = 7), b approximation considering
seven classes, c original image, d segmented image
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Fig. 5 Image Q24a, a class distribution with six classes (K = 6), b approximation considering six
classes, c original image, d segmented image
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Fig. 6 Image Im001_1, a class distribution with five classes (K = 5), b approximation considering
five classes, c original image, and d segmented image
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Fig. 7 Image Im002_1, a class distribution with five classes (K = 5), b approximation considering
five classes, c original image, and d segmented image
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Fig. 8 Image 61060, a class distribution with three classes (K = 3), b approximation considering
three classes, c original image, and d segmented image
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Table 3 Experimental results obtained from the comparison between the Otsu and the AOmethods

Image Clases AO μ(σ) Otsu μ(σ)

T1 T2 T3 T1 T2 T3

233 2 98(1.09) NA NA 90(0) NA NA

Q24a 2 117(1.94) NA NA 125(0) NA NA

Im001_1 3 105(1.36) 154(0.54) NA 97(0) 148(0) NA

Im002_1 3 97(2.81) 154(0.63) NA 96(0) 148(0) NA

61060 4 84(1.18) 157(0.96) 241(1.89) 91(0) 162(0) 215(0)

253036 4 142(1.77) 189(3.84) 232(3.61) 138(0) 191(0) 222(0)

AO-based algorithm. In all figures, the approximation results over the original his-
togram are also shown.

In order to enhance the performance analysis, the proposed approach has been
compared with the Otsu method [21]. Table3 shows some results obtained by both
methods, considering the mean and standard deviation of threshold values obtained
by each algorithmwhen they have been executed 50 times for each image. The results
have been presented in the format mean value μ (standard deviation, σ ) whereas the
elements that not correspond for a specific experiment are marked by NA (Figs. 4,
5, 6, 7).

Figure10 shows two images proposed in [54] as segmentation benchmarks. Such
problems consist in segmenting different cells, considering that their optimal results
havebeen alreadyobtainedby ahumanexpert (ground-truth).Under these conditions,
it is possible to compare the segmentation results obtained by our approach and the
Otsu method in terms of the optimal results. Figure11 presents the results obtained
by the Otsu method and the AO-based algorithm considering the benchmark images
from [54]. A visual inspection of Fig. 11 demonstrates that the Otsu method presents
more undesirable artifacts as a consequence of a poor segmentation.

In order to appropriately compare the results from Fig. 11, the Hausdorff distance
in terms of the ground-truth has been used. Table3 shows the averaged Hausdorff
distances considering both images from Fig. 11. Considering the mean value μ of
the Hausdorff distance, it is clear that the proposed method produces better results,
than Otsu’s method, as can be seen from Table4.
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Fig. 9 Image 253036, a class distribution with two classes (K = 2), b approximation considering
two classes, c original image, and d segmented image
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Fig. 10 Benchmark images for comparison with ground-truth. a Oiginal image with a single cell,
b ground-truth, c original image with multiple cells and d ground-truth

Fig. 11 Some results of the Otsu method and the AO-based algorithm. a AO-based. b Otsu.
c Ground-truth images

Table 4 Hausdorff distance of AO against Otsu method

Method Hausdorff distance

μ σ

AO 2.1364 0.6535

Otsu 2.4655 2.9779 ×10−15

5 Conclusions

In this chapter, a multi-thresholding segmentation algorithm based on a new evo-
lutionary algorithm called Allostatic Optimization (AO) has been proposed. In the
approach, the capacity of the Cauchy distribution to model complex problems (in
presence of outliers) is exploited. Our approach assumes that the segmentation
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process is considered as an optimization problem by approximating the 1-D his-
togramof a given image in terms of aCauchymixture (CM)model, whose parameters
are calculated through the AO algorithm.

In AO, the searcher agents emulate different body conditions which interact to
each other by using operators based on the biological principles of the allostasis
mechanism. The proposed approach encodes the parameters of the CM as an indi-
vidual. An objective function by using the Hellinger distance evaluates the matching
quality between the CM candidate and the original histogram. Guided by the values
of this objective function, the set of encoded candidate mixtures are evolved using
the operators defined by AO so that they can fit into the original histogram.
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Abstract With the use of computers and Internet in every major activity of our
society, security is increasingly important. Biometric recognition is not only chal-
lenging but also computationally demanding. This chapter aims develop an iris bio-
metric system. The iris has the advantages of uniqueness, stableness, anti-spoof,
non-invasiveness and efficiency and could be applied in almost every area (banking,
forensics, access control, etc.). The performance of a biometric classification system
is largely depending on the techniques used for feature extraction. Inspired by the
biological plausibility of ordinal measures, we propose their employment for iris
representation and recognition. Qualitative measurement, associated to the relative
ordering of different characteristics, is defined as ordinal measurement. Besides the
proposing of a novel, fast and robust, ordinal based feature extraction method, the
chapter also considers the problem of designing the decision making model so as to
obtain an efficient and effective biometric system. In the literature, there are different
approaches for iris recognition, nevertheless, there are still challenging open prob-
lems in improving the accuracy, robustness, security and ergonomics of biometric
systems.
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1 Introduction

In machine learning, feature vector extraction involves simplifying the amount of
resources required to accurately describe a large set of data. A proper feature vector
should be highly informative, invariant to a given set of transformations (such as
rotation, scale etc.). In pattern recognition the feature extraction step is considered to
be the most important step for achieving a robust and efficient system. The purpose of
this framework is to guide the development of a compact, relevant and consistent set
of features for the classification task [1] by choosing well-designed ordinal measures
for image representation.

The measurements used in science can be classified into four types of scales:
nominal, ordinal, interval and ratio. Nominal scales are used for labeling variables,
without any quantitative value (ex: gender (male, female), hair color (dark, brown,
blonde and grey)). Ordinal measurements describe order, but not relative size or
degree of difference between the items measured. Interval scales are numeric scales
in which we know not only the order, but also the exact differences between the
values. The classic example of an interval scale is celsius temperature because the
difference between each value is the same. Ratio scales provides the exact value
between units, and they also have an absolute zero. Good examples of ratio variables
include height and weight (Table 1).

Biological and psychological measurement usually operates on ordinal scales.
Computer vision researchers prefer interval or ratio measures for object description
and pattern recognition. As the lowest level of measurement, nominal scale is too
weak for classification. But the power of ordinal measures for feature representation
has been largely underestimated [2, 3].

Ordinal features come from a straightforward concept that we often use: one could
easily rank or order the heights or weights of two persons, but it is hard to answer their
precise differences. For computer vision, the absolute intensity information associ-
ated with an image can vary because it changes under various illumination settings.
However, ordinal relationships among neighborhood pixels or regions present some
stability with such changes and reflect the intrinsic natures of the object [4]. Ordinal
features are efficient to compute and encode an ordinal relationship between two
concepts. Less than and greater than are meaningful terms with ordinal variables.
Figure 1 gives an example in which the average intensities between regions A and B
are compared to give the ordinal code of 1 or 0.

Object recognition is a fundamental task that humans perform many times each
day without noticeable effort. Furthermore, one can identify an object despite dif-
ferent changes that affect its appearance, including illumination, viewing direction,
occlusion etc.

Inspired by the biological plausibility of ordinal measures, we propose to use them
for object recognition. Ordinal data would use non-parametric statistics, including:
median and mode rank order correlation to measure the strength of the associations
between two variables, non-parametric analysis of variance etc.
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Fig. 1 Ordinal measure of relationship between two regions. Region A is brighter than B, A < B;
region A is darker than B, A > B [5]

Table 1 Primary scales of measurement

Scale Description Examples Permissible statistics

Nominal Assign different names to
objects (=, �=)

Zip codes, eye colour, sex
(male, female)

Mode, entropy, correlation,
Chi-square

Ordinal Indicates the relative
position of objects(<, >)

Ranking of teams in a
tournament, grades (good,
better, best)

Median, percentile, rank
order correlation, sign test

Interval Indicates the differences
between objects (+, −)
Zero point is arbitrary

Calendar dates,
temperature

Range, mean, standard
deviation, Pearson’s
correlation

Ratio Ratio of scale values can
be compared (∗, /) Zero
point is fixed

Age, mass, length, income Geometric mean, harmonic
mean, percent variation

The rest of this chapter is organized as follows. Section 2 summarizes different
ordinal measures based methods proposed in literature for pattern recognition, par-
ticularly with applications in biometrics. In Sect. 3, a general algorithm for image
analysis and coding, based on ordinal measures is presented. Section 4 discusses how
to explore effective ordinal features for iris recognition. We conclude the chapter in
Sect. 5.

2 Ordinal Measures, a Key Issue in Pattern Recognition

The advantages of ordinal measures for image representation have already been
verified by some researchers. Sinha [6] was probably the first to introduce ordinal
measures to computer-based vision systems. Based on the fact that several ordinal
measures on facial images, such as eye-forehead and mouth-cheek, are invariant to
individuals and imaging conditions, Sinha developed a ratio template for face detec-
tion [3]. He proposed a representation that is a collection of several pair-wise ordinal
contrast relationships across facial regions. For instance, the average brightness of
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Fig. 2 Pair-wise ordinal relationships invariant under lighting changes [6]

the left eye is always less than that of the forehead, regardless of the lighting condi-
tions. The relative magnitudes of the two brightness values may change, but the sign
of the inequality does not (Fig. 2).

In other words, the ordinal relationship between the average brightness of the
<left-eye, forehead> pair is invariant under lighting changes. Starting from the idea
that the human visual system is far better at making relative brightness judgments
than absolute ones, he suggested the structure presented in Fig. 3, for detecting faces
under significant illumination variations [6].

Assuming that the ordinal relationship between neighboring image regions is
stable and robust, several researchers proposed different multi-lobe differential filters
(MLDFs) for ordinal image analysis and coding [3, 7]. MLDF can encode ordinal
measures of multiple image regions with a flexible parameter configuration. Some
of the variable parameters that can be used are presented in Fig. 4: the number of
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Fig. 3 Invariant ordinal
structure of the image
brightness on a human face
under widely varying
illumination conditions [6]

positive and negative lobes, orientation, scale and location of each lobe, inter-lobe
distance, etc.

Sun et al. proposes proposed in [3] multi-lobe differential filters for ordinal iris
feature extraction. An MLDF operator is passed across the normalized iris image
and each comparison is further encoded as one bit: 1 or 0 according to the sign
of the filtering result. For classification, the Hamming distance was employed. For
example, the ordinal measures for a group of two lobes, may denote point, line, edge,
corner, ridge, slope, etc., as shown in Fig. 5.

An effective scheme for matching noisy iris images under visible lighting is
described in [8]. For feature representation and matching, multiple cues, includ-
ing ordinal measures (Fig. 6), color histogram, text on representation, and semantic
information are employed [8].

In [9] Tan introduced OM for iris, face and palmprint representation by using
a Multi-lobe Ordinal Filter (MLOF) with different parameters, such as distance,
orientation, scale and location. Each biometric region is binary encoded according
on the sign of the filtering results (Fig. 7). Their experiments have demonstrated that
the method achieves significantly higher accuracy than the state-of-the-art systems
with lower computational cost.

Orthogonal Line Ordinal Features are proposed in [4] for palm print represen-
tation. Gabor Ordinal Measures were also used for hand vein recognition [10] and
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Fig. 4 Some typical multi-lobe differential filters [3]

Fig. 5 Ordinal measures and their visual meanings. a Point. b Line. c Edge. d Corner. e Ridge.
f Slope [3]
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Fig. 6 a–c Ordinal filters; d–e iris sub-regions; f–k ordinal code [8]

Fig. 7 Feature extraction with MLOF a Input images; b ordinal code [9]

for face recognition [5, 11, 12]. Local Ordinal Contrast was employed for lip-based
speaker authentication in [13]. A robust ear recognition system is proposed in [14]
using gradient ordinal relationship pattern. Based on the previous studies it can be
stated that the ordinal measurements represent a feasible solution for the personal
identification requirements. The existing architectures also provide directions for
developing new and improved algorithms for image analysis and coding based on
ordinal representations.

Object classification is a natural task for human visual system: we can classify
a novel object, without effort, based on its appearance. It is therefore natural to
study the biological mechanisms used for object classification and to propose similar
approaches for computer vision systems.
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The biological plausibility of visual ordinal measures has been verified by sev-
eral neuroscience researchers. DeAngelis et al. [15] found that many striate cortical
neurons’ visual responses saturate rapidly regarding the magnitude of contrast as the
input, which tells us the determining factor of visual cognition is not the absolute
value of contrast, but the contrast polarity. Rullen et al. [16] suggested that temporal
order coding might form a rank-based image representation in the visual cortex [3].
Inspired by the human visual system, Ullman et al. proposes in [17] a part-based
method for pattern recognition. On their approach objects within a class are repre-
sented in terms of image fragments. The classification is based on a direct grey-level
comparison between stored fragments and the input image. The method measures
the qualitative shape similarity (using the ordinal ranking of the pixels in the regions)
and the orientation difference (using gradient amplitude and direction) [17].

Based on ordinal pattern analysis, a mutual information technique is proposed
in [18] to describe correlations of electromyogram signals during hand open/hand
close states.

Several arguments in favor of ordinal measures applications are further presented:

• features based on high-level measurements are useful for image reconstruction but
unnecessary for object recognition;

• high-level measures involve complex and time-consuming computations;
• ordinal measures are simple to implement and compact in feature template [3].

3 A New Algorithm for Image Analysis and Coding,
Based on Ordinal Measures

The aim of this chapter is to describe a novel and robust image feature vector extrac-
tion method based on ordinal measures. Standing from the idea that a ‘machine
learning experimenter’ needs to address three questions: (i) what to measure, (ii)
how to measure it, and (iii) how to interpret it, the proposed algorithm follows the
next sequence of processing steps (Fig. 8).

Fig. 8 Image feature vector
extraction based on isolines Input Image

Symbols Assignation
(1, 2,  3, ... , 27)

Coding
Histogram 

Descriptors Extraction
(L, A, C)
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Fig. 9 Input image, viewed
as a matrix

The input image is viewed as a matrix of pixels, where pixels are interpreted as
heights with respect to the x − y plane as shown in Fig. 9.

Firstly, the isolines of the matrix are computed where an isoline (also called
a contour line) is a curve in the xy plane along which the function f (x, y)has a
constant value, Cj. These curves are defined by the following equation:

f(x, y) = Cj, j = 1, 2, . . . ,N (1)

where N is the number of detected contours. A local maxima or minima is surrounded
by several contour lines as presented in Fig. 10. The number of the contour lines could
be chosen automatically based on the minimum and maximum values of the matrix
or a prefixed number of levels could be selected by the user. In our example, for the
input matrix, four surfaces are delimited:

• S2 and S4 correspond to local maxima;
• S1 and S3 correspond to local minima (Fig. 10).

Fig. 10 Surfaces delimited
by isolines



290 S. Emerich et al.

Three descriptors were associated to each surface:

• L (Level) which describes the depth of the surface by counting the number of
internal isolines;

• A (Area) characterizes the area of the surface;
• C (Contour) defines the constant value related to external contour line of the

surface.

The proposed new coding procedure supposes that pairs of surfaces are further
compared and a symbol is provided (there are 27 different symbols: 3×3×3), indi-
cating the differences between the individual L, A and C traits of the two regions
involved in the ordinal comparison (>, < or =).

Each ordinal relation by itself is not reliable enough and is too coarse to provide
a good discriminant function to distinguish between different classes therefore it is
necessary to consider many of the relations together to achieve satisfactory perfor-
mances.

The order of surfaces to be compared may be performed in different ways. The
following two procedures are proposed. The first one assumes center of gravity
determinations for each surface and establishing the order according to their distance
from the origin of the coordinate system. A second method supposes that the delimited
surfaces are compared two by two. In this way the computational cost is higher but
a rotation invariant feature vector is obtained. In many practical computer vision
applications, rotation invariance is a crucial issue.

A histogram of the 27 possible combinations is further produced, forming a fea-
ture vector with fixed dimension 1×27, which carries information about symbols
frequency. Because of their fixed length, the resulted feature vectors are ideal form
of inputs for many classifiers (Fig. 11).

A detailed description of the entire process is presented in Tables 2 and 3. By
scaling the input matrix (from 40×40 pixels to 10×10) (Fig. 12) we get the contour
plot given by Fig. 13.

The histogram of the obtained symbols is the same for both matrices (original and
scaled). This remark indicates that the proposed coding procedure is robust to scale
changes.

In a period shorter than 20 years, wavelets have imposed themselves as a fruitful
tool for both signal and image processing. The theory behind wavelets has been
developed independently by mathematicians, scientists and engineers. A privileged
area of applications where wavelet methods have been found to be relevant is pattern
recognition. Ordinal measurements could be combined with DWT2 (Bi-dimensional
Discrete Wavelet Transform). DWT2 leads, after one level decomposition, into four
components: the approximation coefficients (cA), and the details coefficients in the
three orientations, respectively the horizontal, the vertical, and the diagonal (cH, cV,
cD) [19], as shown in Fig. 14.

Figure 15 presents the surfaces obtained according to the previously presented
method. The feature vector derived from approximation coefficients is the same with
the one obtained from the input image, and together with corresponding vectors
resulted from detail coefficients, ensures a highly informative final feature vector.
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Fig. 11 Symbols
assignation
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Table 2 Corresponding surfaces and descriptors for the input matrix

S1 S2 S3 S4

Level (L) 3 1 2 3

Area (A) 189.10 32.40 120.07 210.12

Constant (C) −0.2929 1.7926 −0.2929 1.7926

Table 3 Symbols assignation for the input matrix

i=1 (S2 vs. S1) i=2 (S3 vs. S2) i=3 (S4 vs. S3)

L(i+1) versus L(i) − + +
A(i+1) versus A(i) − + +
C(i+1) versus C(i) + − +
Symbol 25 3 1

The presented method generates simple data structures which are both compact
and of known size so that, limited memory resources in embodiments such as Smart
Cards can be employed efficiently. This aspect has important benefits for data storage
and transfer operations.
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Fig. 12 Scaled version of the input matrix

Fig. 13 Surfaces delimited by isoline

The advantages offered by the proposed method recommend it for several areas
of application including biomedical image analysis, biometry (iris recognition), etc.

For one-dimensional signals a similar procedure TESPAR DZ (Time Encoded
Signal Processing and Recognition) was proposed by King [20]. The TESPAR DZ
method is based on an approximation model employing the zeros theory, such that
the signal is divided in periods between successive zero crossing of the waveform.
Duration (D), Shape (S) and Amplitude (A) are used as descriptors for each epoch.
Then, pairs of epochs are compared and a symbol is provided [21] (Fig. 16).

4 Ordinal Representation for Iris Recognition

4.1 Biometrics

Nowadays, computers and Internet are used in every major function of our society, so
security is increasingly important. For many years, passwords, PINs or identity cards
have been used for person’s identification. The advantage is that these modalities do
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Fig. 14 Resulted matrix after DWT2 decomposition of input image a cA; b cH; c cV; d cD

Fig. 15 Surfaces delimited by isolines for wavelet coefficients a cA; b cH; c cV; d cD
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not change over time and they are not affected by the environment, but they cannot
avoid problems such as being forgotten or guessed by others. Biometrics provides a
promising solution for reliable personal identification [22]. The availability of faster
computers and improved sensing technology coupled with significant advances in
pattern recognition afford researchers to develop robust biometric systems. The goal
of pattern recognition is to classify the objects in different categories or classes. In
biometry the objects could be images (iris, palm vein) or signal waveforms (voice,
signature, etc.).

Biometry has changed and will continue to change the way many activities are
carried out by each of us. Biometric applications concern a variety of areas: civil
and criminal identification, surveillance and screening, health care, eCommerce,
eGovernment, physical and logical access. Biometric systems are used in airports,
financial service institutions, banking ATMs, houses, etc. Many computers, laptops
and smart phones have incorporated webcams, microphones and even fingerprint
scanners, offering to the users the possibility to embrace biometric authentication
based on fingerprint, iris, face or voice. Although several biometric modalities (i.e.
fingerprint, voice and face) have already been used in large-scale deployments, there
are many other attractive and “new” modalities in various stages of development and
assessment (hand vein, iris, DNA etc.). However, no biometric modality is impecca-
ble and each one has advantages and disadvantages for a given use case.

Table 4 compares several biometric technologies with each other against seven
criteria.

• Universality describes how commonly a biometric is found in each individual.
• Uniqueness is how well the biometric separates one individual from another.
• Permanence measures how well a biometric resists aging.
• Collectability explains how easy it is to acquire a biometric for measurement.
• Performance indicates the accuracy, speed, and robustness of the system capturing

the biometric.
• Acceptability indicates the degree of approval of a technology by the public in

everyday life.
• Circumvention is how easy it is to fool the authentication system [23].

It is known that, from all biometric techniques, iris based biometric systems are
the most promising for high security environments. Although diverse iris recognition
methods have been proposed, the fundamentals of this biometrics have not a unified
answer.

Though the theory behind iris recognition was studied as early as the 19th century,
most research has been done in the last few decades. At the moment, two prototypes
of iris recognition systems had been developed, by Daugman [25] and Wildes et al.
[26]. Promising results were obtained by Boles and Boashash [27] using wavelet
transform, and by Sanchez-Reillo and Sanchez-Avila in [28], where Gabor filters are
employed.

Iris is a colored pigmented tissue (usually blue, brown or green), found outside the
pupil to regulate it from incoming rays of light. It has an extraordinary structure and
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provides many interlacing minute characteristics such as freckles, coronas, stripes,
furrows, crypts and so on.

The human iris has several benefits when compared with other biometrics meth-
ods: is very stable over a long period of time. In addition, the inherent isolation from
the external environment and the impossibility of surgically modifying it without
high risk of damaging the user’s health provides strong immunity to forgery [29].
Some important factors that may affect the performances of iris recognition system
are [2]:

(a) Registration: Although the rotation difference between two images can be solved
by a brute force registration process, the large computational cost makes it not
preferred in real time application.

(b) Normalization is expected to provide scale and position invariance of input
images. Complex normalization methods were developed by researchers, but
they proved to be computationally intense and for real time applications a very
fast digital image processing hardware is required.

(c) Contrast variation
(d) Noise may disturb the precision of traditional algorithms. But the richness of

inter-region sharp intensity differences provides a good source of ordinal mea-
sures for iris coding. Qualitative relationships across distinct iris regions can be
insensitive to the contrast variations.

A proper iris recognition algorithm should be tolerant to the drawbacks mentioned
above and should also encode efficiently image properties [2].

Iris scan technology has been traditionally used for surveillance and security
purpose. In present iris based systems are used in airports for passenger authentication
process, in financial service institutions, for ATM access usage etc.

The proposed system intends to argue that ordinal image representation provides
a better trade-off for biometric recognition between accuracy, robustness and effi-
ciency.

4.2 The Proposed Iris Based Biometric System

The processing flow used to implement the iris recognition system is presented in
Fig. 17.

The qualities of the image acquisition, segmentation, normalization, feature
extraction and the used classifier define the performance of the system.

Database: For experiments a public database was used. It contains 3×128 iris
images (i.e. 3×64 left and 3×64 right). The features of the images are: 24 bit-RGB,
576×768 pixels, file format: PNG [30].

Iris Segmentation and Normalization: Segmentation requires a proper detection
of the inner and outer boundaries of the iris texture. The specular reflections inside
the pupil area are contained in the images from the database.
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Fig. 16 TESPAR DZ coding procedure

ROI
Selection

Database

Feature
 Extraction

Decision

MatchingInput
Image

Fig. 17 Biometric system block diagram

Fig. 18 Iris, segmented
image (ROI selection)
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Fig. 19 Unwrapped iris (ROI transformation into polar coordinates)

At the beginning, a Canny edge detection is employed in order to generate an
edge map. Then, the circular Hough transform establishes the radius and the centre
coordinates of the iris region within the whole edge image which was previously
obtained. Further, the pupil’s radius and centre coordinates are searched within a
crop of the image that contains only the region of interest (ROI) [31].

The detected iris region Fig. 18 is unwrapped by remapping each point to a pair of
polar coordinates (r, θ ) using the Cartesian to polar reference transform suggested
by Daugman [32]. Hence, we obtain a rectangular representation for the iris after a
normalization process, Fig. 19.

Feature Extraction: The feature vectors are extracted from the polar representa-
tion of the iris. Firstly, the bidirectional discrete wavelet transform (DWT-2D) was
applied, by using different mother functions. Researchers are faced with an ever
increasing variety of wavelets to choose from and the choice of the best wavelet
is application-dependent. We selected several well-known wavelet functions such
as Daubechies of order 1 and 3 (Db1, Db3), Battle–Lemarie of order 1 and 2
(Lem1, Lem2), Biorthogonal of order 1.3 (Bior1.3), Reverse Biorthogonal of order
2.4 (Rbio2.4) and Coiflet of order 1 (Coif1). Comparative studies seem to be very
useful for the selection of a particular wavelet function. After one level decom-
position, there are four components: approximations (cA), and details in the three
orientations—horizontal, vertical and diagonal (cH, cV respectively cD).

After several experiments we conclude that for approximations 13 contour levels
should be firstly computed and after that 6 of them to be selected (the first and the
last three ones) (Figs. 20 and 21). For details 3 contour levels are considered Fig. 22.
As presented in the previous chapter, three descriptors are associated to each surface:
L (Level), A (Area) and C (Contour value).

Further, pairs of surfaces are compared and a symbol indicates the differences
between the individual traits of the two surfaces being compared. The symbol stream
is then condensed into fixed-size feature vectors by simply counting how many times
each symbol occur. Individual vectors resulted from approximations respectively
details are than fused into a final feature vector. The feature vector length has 4×27
coefficients for all irises. Thus the image is transformed into an encoded stream of
discrete numerical symbols. This compact iris code greatly facilitates the matching
process.

Classification: To perform training and classification tasks for identification exper-
iments, WEKA toolkit was used. WEKA is a data mining workbench that allows
comparison between many different machine learning algorithms. The first step was
to represent our learning problem using an .arff file, where each instance is repre-
sented as a feature vector. The header of this file identifies the types of the features
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Fig. 20 Surfaces delimited
by isolines for unwrapped
iris, approximation
coefficients (full size image)

Fig. 21 Surfaces delimited
by isolines for unwrapped
iris, approximation
coefficients (zoomed area)

Fig. 22 Surfaces delimited
by isolines for unwrapped
iris, diagonal detail
coefficients (zoomed area)

and the classes being predicted. WEKA summarizes the classification results by gen-
erating a confusion matrix [33]. In the present study, different classifiers were used,
based on the following algorithms: Bayes Net (BN), Naive Bayes (NB), Radial Basis
Function Neural Network (RBF), k-Nearest Neighbor (1−NN for k=1 and 3−NN
for k=3) and Support Vector Machine (SVM).
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Fig. 23 The Performances
of different classifiers in
term of accuracy rates

A Bayes Classifier is a simple probabilistic classifier based on applying Bayes’
theorem with strong (naive) independence assumptions. In simple terms, a naive
Bayes classifier assumes that the presence (or absence) of a particular feature of a
class is unrelated to the presence (or absence) of any other feature [34].

In the RBF Network, class implements a normalized Gaussian radial basis function
network. It uses the k-means clustering algorithm to provide the basis functions.

The Nearest Neighbor Classifier (NNC) uses normalized Euclidean distance to
find the training instance closest to the given test instance, and predicts the same
class as this training instance. If multiple instances have the same (smallest) distance
to the test instance, the first one found is used.

Support Vector Machines are based on the statistical learning theory of structural
risk management. They are built by mapping the training patterns into a higher
dimensional feature space where the points can be separated by using a hyper plane
[35]. WLSVM software toolbox was employed for this classifier (Weka LibSVM—
Integrating LibSVM into Weka) and may be seen as a form of implemented LibSVM
working in Weka [36]. The main advantage is that LibSVM works considerably
faster than WEKA. There are four kernels available for the SVM classifier: linear,
polynomial, radial basis function and sigmoid. Optimal values for the SVM kernel’s
parameters will found by performing a grid search on the training data.

Experiments: Identification experiments were carried out, using two iris images/
person for training (left and right eye) and four iris images/person for testing (two
for the left and two for the right eye).

The SVM classification performances were tested for all available kernels. A
proper choice of parameters is crucial for SVM to achieve good recognition rates. In
the experiments the simple grid-search approach was used: parameters were varied
with a fixed step-size through a wide range of values and the performance of every
combination was measured. A 10-fold cross validation technique was also employed.
The training data was randomly split into 10 sets, 9 of which were used in training
and the 10th for validations. Then iteratively another nine were picked and so forth.

The best classification rates issued by identification experiments are presented
in the Fig. 23. Comparative studies seem to be very useful for the selection of a
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particular classifier. The best results were obtained by using Db1 wavelet function,
which is actually the Haar wavelet, together with the polynomial kernel (C =100
and d =7).

5 Conclusions

This chapter handles concepts of pattern recognition and their applications to solving
real life problems such as biometric identification. Biometrics offers the promise
of much stronger identity verification, and identity management is becoming ever
more important to economic and social life. The need for enhanced security persists
more than ever in a more electronically dependent and interconnected world. The
traditional authentication methods are neither secure enough nor convenient for many
automatic identification systems.

Firstly, a new idea for image feature representation by using ordinal measures
was presented. The proposed algorithm is invariant to rotation and scale. Moreover,
it provides fixed size descriptors regardless of the image dimension thus being ideal
for many classifiers. Besides fixed dimension, the small number of coefficients used
to store and characterize an image should be mentioned. The ordinal measures ensure
the image representation to be robust to different intra-class variations (such as illu-
mination), signal noises, misalignment or nonlinear deformations. The new method
is considered to be suitable for portable applications due to its computationally low
costs.

The proposed algorithm was further integrated to implement a biometric system,
based on iris. The performances of several classification algorithms were inves-
tigated. The Support Vector Machines classifier was tested for linear, polynomial,
radial basis function and sigmoid kernels, using 10-fold cross-validation on the train-
ing set. The obtained best parameters were then used for testing. The ability of several
wavelets was also investigated, results showing that Haar functions seem to be the
best suited in this case.
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Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-
2080”.

References

1. Apatean, A., Rogozan, A., Bensrhair, A.: Visible-infrared fusion schemes for road obstacle
classification. J. Transp. Res. Part C Emerg. Technol. 35, 180–192 (2013)

2. Sun, Z., Tan, T., Wang, Y.: Robust encoding of local ordinal measures: a general framework of
iris recognition. In: Biometric Authentication, pp. 270–282. Springer, Heidelberg (2004)

3. Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell.
31(12), 2211–2226 (2009)



302 S. Emerich et al.

4. Srinivasan, B.: Performance of biometric palm print personal identification security system
using ordinal measures. Int. J. Comput. Sci. Bus. Inform. 7(1) (2013)

5. Liao, S.C., et al.: Face recognition using ordinal features. Advances in Biometrics, pp. 40–46.
Springer, Heidelberg (2005)

6. Sinha, P.: Biologically Motivated Computer Vision. Qualitative Representations for Recogni-
tion. Springer, Heidelberg (2002)

7. Chai, Z., et al.: Gabor ordinal measures for face recognition. IEEE Trans. Inf. Forensics Secur.
9(1), 14–26 (2014)

8. Tan, T., et al.: Noisy iris image matching by using multiple cues. Pattern Recogn. Lett. 33(8),
970–977 (2012)

9. Tan, T., Sun, Z.: Ordinal representations for biometrics recognition. In: Proceedings of the
Fifteenth European Conference on Signal Processing. Poznan, Poland (2007)

10. Meng, Z., Gu, X.: Hand vein identification using local Gabor ordinal measure. J. Electron.
Imaging 23(5) (2014)

11. Chai, Z.: Gabor ordinal measures for face recognition. IEEE Trans. Inf. Forensics Secur. 9(1)
(2014)

12. Chai, Z.: Histograms of Gabor ordinal measures for face representation and recognition. In:
5th IAPR International Conference on Biometrics (2012)

13. Chan, C.H., et al.: Local ordinal contrast pattern histograms for spatiotemporal, lip-based
speaker authentication. IEEE Trans. Inf. Forensics Secur. 7 (2012)

14. Nigam, A., Gupta, P.: Robust ear recognition using gradient ordinal relationship pattern. In:
Computer Vision-ACCV 2014 Workshops. Springer (2014)

15. DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Spatiotemporal organization of simple-cell recep-
tive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J.
Neurophysiol. 69(4), 1091–1117 (1993)

16. Van Rullen, R., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal gan-
glion cells tell the visual cortex. Neural Comput. 13(6), 1255–1283 (2001)

17. Ullman, S., Sali, E., Vidal-Naquet, M.: A fragment-based approach to object representation
and classification. In: Visual Form 2001, pp 85–100. Springer, Heidelberg (2001)

18. Ouyang, G., Ju, Z., Liu, H.: Mutual information analysis with ordinal pattern for EMG based
hand motion recognition. In: Intelligent Robotics and Applications, pp. 499–506. Springer,
Heidelberg (2012)

19. Misiti, M., Misiti, Y., Oppenheim, G.: Wavelets and their application. In: Digital Signal and
Image Processing Series. ISTE (2007)

20. King, R.A: Waveform coding method. U.S. patent No. 6748354B1, June 8 (2004)
21. Emerich, S., Lupu, E., Rusu, C.: A new set of features for a bimodal system based on on-line

signature and speech. Digit. Signal Process. 23(3), 928–940 (2013)
22. Li, S.Z., Jain, A.K.: Encyclopedia of Biometrics. Springer, London (2009)
23. Cheng, Qi.: User habitation in keystroke dynamics based authentication. ProQuest (2007)
24. Lupu, E., Pop, G.P.: An overview of biometrics. Acta Technica Napocensis Electron. Telecom-

mun. 47(2), 42–56 (2006)
25. Daugman, J.: Biometric personal identification system based on iris analysis. U.S. Patent No.

5291560 (1994)
26. Wildes, R., et al.: A system for automated iris recognition. In: Second IEEE Workshop on

Applications of Computer Vision, pp. 121–128 (1994)
27. Boles, W.W., Boashash, B.: A human identification technique using images of the iris and

wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)
28. Sanchez-Reillo, R., Sanchez-Avila, C.: Processing of the human iris pattern for biometric

identification. In: Eighth International Conference on Information Processing and Management
of Uncertainty in Knowledge Based Systems, pp. 653–656. Spain (2000)

29. Sanchez-Avila, C., Sanchez-Reillo, R., de Martin-Roche, D.: Iris-based biometric recognition
using dyadic wavelet transform. IEEE Aerosp. Electron. Syst. Mag. 17 (2002)

30. Dobeš, M., Machala, L.: Iris database. http://www.inf.upol.cz/iris/

http://www.inf.upol.cz/iris/


Image Analysis and Coding Based on Ordinal Data Representation 303

31. Masek, L.: Recognition of human iris patterns for biometric identification. PhD Thesis,
University of Western Australia (2003)

32. Daugman, J.G.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14,
21–30 (2004)

33. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. SIGKDD Explor. 11(1) (2009). www.cs.waikato.ac.nz/ml/weka

34. Hossain, E., Chetty, G.: Combination of physiological and behavioral biometric for human
identification. Mach. Learn. Data Min. Pattern Recogn. Lect. Notes Comput. Sci. 7376, 380–
393 (2012)

35. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
36. EL-Manzalawy, Y., Honavar, V.: WLSVM integrating LibSVM into Weka environment (2005).

http://www.cs.iastate.edu/~yasser/wlsvm

www.cs.waikato.ac.nz/ml/weka
http://www.cs.iastate.edu/~yasser/wlsvm


Intelligent Detection of Foveal Zone
from Colored Fundus Images of Human
Retina Through a Robust Combination
of Fuzzy-Logic and Active Contour Model

Rezwanur Rahman, S.M. Raiyan Kabir and Anita Quadir

Abstract Detection of the center of a fovea and its boundary from a retinal image
is a challenging task due to the irregularity of the avascular foveal region. Several
attempts have been made before in order to detect the foveal region and its bound-
ary from fluorescein angiographic images. The irregularity and large variation in
the human retinal images made the task increasingly difficult. In this current work
funds images were considered instead of fluorescein angiographic images in order to
ensure the applicability of the proposed algorithm in both biomedical and biometric
analysis. A robust fuzzy-rule based image segmentation algorithm has been devel-
oped in order to extract the foveal region from a wide variety of images from different
persons. Detection of foveal region comprised of locating the geometric center and
extracting the boundary. The geometric center was evaluated by weighted averaging
the grey scale intensities obtained from implementing the current algorithm. This was
followed by applying gradient vector flow (GVF) based active contour technique in
order to extract the boundary of the foveal region. The algorithm was applied on a
several retinal images acquired from different persons with a very good success rate.
The present work is considered to be an important contribution in intelligent image
analysis of human retina since it incorporates a robust “fuzzy-rule” in extracting
foveal region. Similar approach has not been adopted in the literature. The proposed
algorithm is seen to be versatile in analyzing a wide range of retinal images.
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1 Introduction

Digital signal and image processing techniques opened the door for automation in
biometric and biomedical image analysis. Biometric systems analyze images of dif-
ferent parts of human body to identify/distinguish different person. Biomedical image
processing analyzes images in oder to diagnose different kinds of diseases. Retina is
the inner part of human eye which senses the outside illumination. It has distinctive
features based on the spatial arrangement of blood vessels, dark central part (fovea)
and bright spot (optic nerve). These features are important for the purpose of biomet-
ric authentication and diagnosing disease (i.e. diabetes) for biomedical applications.
In 1935, Dr. Carleton Simon and Dr. Isodore Goldstein published a paper where they
discovered that every retina possesses a unique and different blood vessel pattern.
Another study conducted by Dr. Paul Tower in 1950s showed that identical twins
also have unique retina [6]. A statistical analysis was carried out on the blood vessel
patterns in retinal images by Sánchez and co-workers in order to diagnose diabetic
patients [18]. In another work by Bernhard and co-authors, statistical classification
techniques were applied on retinal images on order to extract the feature related to
an individual’s diagnose for diabetes [4]. For either biomedical or biometric applica-
tions, it is required to have a reliable image acquisition method. In common practice
retinal images are acquired in two major ways. One option is Fluorescein angiogram
of the retinal image which is mainly used for biomedical purposes [26]. This method
is inconvenient in biomedical purpose because it involves injecting sodium fluo-
rescein in human body. Biometric retinal authentication systems are designed for
frequent daily use. So, fluorescein angiography may not be recommended for this
application either. On the other hand, color fundus images are popular due to easier
image acquisition method by high resolution RGB digital cameras. Since no chemi-
cals are required, this image acquisition method is more feasible for both biometric
and biomedical applications [15, 21]. One caveat with the colored funds images is the
challenge in detecting fovea and its boundary from an arbitrary image. The brightness
and contrast in the fundus images may vary with an individual’s eye. Previously few
attempts were made in order to extract the foveal region [5, 19, 26]. However, it has
been a difficult task to detect the fovea region and its boundary simultaneously for
wide range of dataset. As mentioned earlier, fovea is a small, slightly concave area
without retinal capillaries. It has no precise definition in terms of geometric parame-
ters [5, 26]. It is the most accuracy vision zone of the retina. Foveal Avascular Zone
(FAZ) refers to the dark area surrounding the fovea [5]. In the context of various
applications it is often required to have a reasonably precise location of fovea and
optic nerve in order to define a global axis of the images because different fundus
images from a same person might not have translational or rotational consistency [15,
17]. Hence, in addition to estimating the FAZ, it’s geometric centroid and shape are
ought to be detected [5, 26]. This demands for a robust and computationally efficient
algorithm which is the overall goal of this work.
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2 Background

In a typical color fundus retinal image showed in Fig. 1, retinal image can be divided
into three different and unique parts.

1. The solid brightest part of the retinal image. It is the optic disk. At optic disk,
optic nerve joins the retina and acts as the transmission line between the brain
and the eye.

2. The red non-linear fragmented lines all over the retinal image are called the blood
vessels.

3. The center of the image is called the fovea. It is the darkest part of the retina.

In previous works, fixed thresholding technique was applied based on observation
in order to determine the pixels belonging to the FAZ and the centroid of these pixels
was taken as the center of fovea in [15, 17]. As the gray level of FAZ is different in
different retinal images, this method was proven to be highly exclusive to specific
images and hence became less accurate. The ambiguity in the color distribution is
considered to be a primary reason. It is clearly seen in Fig. 1 that the obscure nature
of the blood vessels around the FAZ leads to challenge in detecting this region and
its center. Hence the current work addresses the problem through fuzzy-rule based
analysis [29]. Previously, fuzzy logic based technique was applied on blood vessel
segmentation [1]. However, detecting FAZ using the fuzzy classification technique
needs entirely different attention. In addition, active contour model based on Gradient
Vector Flow (GVF) is used to precisely detect the boundary of the fovea, using some
parameters estimated from the fuzzy rule based analysis [5, 7, 16, 20, 22, 28, 29].

Fig. 1 A color fundus
retinal image

Blood Vessel Pattern

Fovea

Optic Disk
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3 Preprocessing of Retinal Image

The acquired fundus images were of high resolution. So, any filtration was not applied
in order to pre-process them. As it is seen in Fig. 2, optic disk in the red layer
is more detectable, blood vessel pattern is clearly visible in the green layer and
FAZ is significantly darker in the blue layer. Hence, based on this observation Red,
Green or Blue layers were considered in further analysis in order to extract different
components from the retinal images.

The optic disk is the brightest region in the retinal image. It typically occupies
approximately 14 ∼ 15 % of the entire image. The appearance of the optic disk can
be characterized by a relatively rapid variation in the color intensity in red layer [19].
In this layer the disk looks like a solid oval shaped region. Blood vessels overlapping
the optic disk almost disappear. Figure 3a gives a clear view of the optic disk and its
surroundings in red layer and Fig. 3b shows the histogram of the grey scale values.
It is observed that the median of the histogram resides within the higher color range.
Based on this observation, a threshold value Ith1 is selected as initial guess which
includes the median of the histogram and Ith1 remains in the higher color range.
It is also observed that for all retinal images the histograms near the optic disk
region are similar. The color centroid of the pixels over the threshold limit was taken
based on Eq. 1 [15, 17]. The detection of optic disk was refined by considering
the new threshold to be Ith2 = Ith1 − Δ. Δ is the level of confidence (e.g. 90 %). In
Fig. 3b, there are several peaks and valleys in the histogram. In order to consider all

Fig. 2 a Red layer of retinal image. b Green layer of retinal image. c Blue layer of retinal image
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Optic Disk Centre

Ith2

Ith1

Optic Disk Centre

Ith2

Ith1

(b)
(a)

Fig. 3 a Optic disk in red layer of a retinal image, b The histogram of the optic disk in red layer
with threshold values Ith1 and Ith2

pixels corresponding to the optic disk, the value of Δ is chosen so that the threshold
Ith2 resides between the highest peak and the peak ahead to the highest peak [11].
Afterwards, the boundary of the aperture is detected by edge detection with canny
method [2]. The location for optic disc center is defined as follows:

xoc1 =
∑

M1(x, y).x∑
M1(x, y)

, yoc1 =
∑

M1(x, y).y∑
M1(x, y)

,

M1(x, y) =
{

I(x, y) I(x, y) � Ith1 .

0 otherwise

(1)

Here, I(x, y) = intensity of the pixel at position (x, y) and Ith1 is the threshold
value for step one. (xoc1 , yoc1 ) is the coordinate position of primary optic disk center.

The foveal region (FAZ) in retina is defined as an area of circle. The geometric
center of FAZ is located at ≈2DD (DD = optic disk diameter) far from the optic
disk center along the line connecting the center of optic disk and the center of the
fovea [9]. It is observed that the FAZ resides around the line connecting the optic disk
center and its nearest point on the boundary. Figure 4a shows the straight line through
the optic disk center and nearest point on the boundary around it. As the aperture of
the retina is circular, farthest point from the optic disk will be on the straight line.
The mid point between the nearest and farthest point from optic disk center is taken
as the initial guess for the center of the retina. It is noticed that the FAZ remains in
the nearest neighborhood zone of the initial center of the retina. Prior to applying
any pattern analysis method the FAZ needs to be rotationally and translationally
invariant. The translational normalization is done by moving the initial center of the
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Initial centre
 point of 

retinal image

Nearest point 
on the boundary 

from optic 
disk centre

 Optic disk centre

Farthest point 
on the boundary 

from optic 
disk centre

 Optic disk centre

Farthest point 
on the boundary 

from optic 
disk centre

Initial centre
 point of 

retinal image

Nearest point 
on the boundary 

from optic 
disk centre(b)

(a)

Fig. 4 a Optic disk center, nearest and farthest point on boundary from optic disk center and
initial center point on the connecting straight line, b Image in the blue layer after translational and
rotational normalization

retina on the global center of the image. The rotational normalization is performed
by considering line through the initial center and the optic disk center. The image in
blue layer was considered for further analysis and normalization due to the fact that
FAZ is the most significant in this layer [15, 17]. Output from the normalization is
shown in Fig. 4b.
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3.1 Detection of Region of Interest

As mentioned in [10], the most likely geometric description for FAZ is: circular
with a radius of ≈1DD. Figure 5 shows the schematic diagram of the position of
the candidate region for FAZ. Initially, the center of the retinal image is assumed
to be coinciding on the fovea center. The distance between the optic disk center
and the initially guessed center for retina was assumed to be ≈2DD. The possibility
of finding fovea increases with the increase in distance towards the center of the
retina. The chance of detecting fovea decreases with the increase in distance from
the center of the retina. As a result, an ellipse can be defined which contains the
fovea. The horizontal axis of the image can be taken as the major axis. Twice the
distance between the optic disk center and the initial center of retina can be taken as
the length of the major axis. As the radius of the probable zone is half of the distance
between the optic disk center and initial center of retina [9, 10], 50 % of length of
the major axis can be considered as the length of the minor axis.

A rectangle with a length of 2DD can be taken as the Region of Interest (ROI).
Figure 5 shows the schematic diagram of the ROI within the ellipse. The width of the
rectangle can be taken as the vertical line segment between the intersecting points
of the ellipse and a line 1DD away from the initial center of retina. Taking the initial
center of the retina as the origin of the global coordinate system, the ROI can be
explained mathematically by Eq. 2 and Fig. 6a.

Fig. 5 Schematic position
of the probable zone and the
region of interest in retinal
image

1 DD

1 DD

2 DD

1 DD

Optic disk

Region of
Interest

Farthest point
Optic disk

Nearest point
Optic disk

Candidate Region
of fovea
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(a) (b)

A

BC

D

L1

L2

Optic disk 
centre

Initial centre of retina
(origin of coordinate system) 

Fig. 6 a Elliptical section containing the fovea, b Rectangular section from the central part of the
elliptical region

{A, B} = {(x, y)|x, y ∈ L1},
{C, D} = {(x, y)|x, y ∈ L2},
E = {(x, y)| x2

a2 + y2

b2 = 1},
L1 = {(x, y)|x = w

2 ,−∞ < y < ∞},
L2 = {(x, y)|x = −w

2 ,−∞ < y < ∞}.

(2)

Here, a = 2DD, b = 1DD and w = 2DD. d(A, B) and d(C, D) are the distances
between A, B and C, D, respectively. Hence, the four vertices of the ROI rectangle
are A(w/2, h/2), B(w/2,−h/2), C(−w/2,−h/2) and D(−w/2, h/2). The distance
d(A, B) = d(C, D) is taken as the width of the rectangular ROI. Mathematically,
ROI can be defined as a set of points ROI with Eq. 3 and Fig. 6b.

ROI :=
{
(x, y)| − w

2
� x � w

2
,−h

2
� y � h

2

}
. (3)

4 Steps for Detecting the Center of the Fovea

After detecting and extracting the ROI from the retinal image, the histogram and con-
tour plot of the ROI of different images were observed. Figure 7 shows the histogram
and contour plot of the ROI of a retinal image. It is clearly seen in Fig. 7b that the
FAZ is a small area and its grey scale intensity level is significantly lower than the
surrounding parts in the ROI. The histograms of ROI are almost normally distributed
with a mean μ and standard deviation σ (Fig. 7a). As the grey scale intensity level
of FAZ is significantly lower than the mean and its area is comparatively smaller,
the pixels of the FAZ reside below the mean grey scale values. Mathematically, if
X × Y is a retinal image and I is the set of grey scale intensity in the image, then the
intensity of X × Y can be expressed as a function in Eq. 4.
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μ

Colour lower 
than mean µ
(Accepted)

Colour higher
than mean µ
(Rejected)

(a) (b)

Fig. 7 a Histogram of the region of interest, b Filled contour plot of the region of interest ROI

I = {i|i = 1, 2, 3 . . . 255},
∀x∀y I : X × Y → I ¬∃ I−1.

(4)

As ROI is a part of the retinal image, it can be expressed as ROI ⊂ X × Y . So,
the intensity of the ROI can be expressed as a function in Eq. 5.

∀x∀y IROI : ROI → IROI ¬∃ I−1
ROI . (5)

Here, IROI ⊂ I , IROI is the set of intensities in ROI. FAZ is a part of the ROI which
is expressed in terms of FAZ ⊂ ROI. As observed in the histogram in Fig. 7a, IROI

can be divided into two intensity sets I ′ and I ′′ with Eq. 6.

I ′ = {i ∈ IROI |i � μ},
I ′′ = {i ∈ IROI |i � μ}. (6)

Here, I ′ ∪ I ′′ = IROI and I ′ ∩ I ′′ = {φ}. As mentioned earlier, the points of FAZ
have intensities lower then μ. The intensity set of the FAZ, IFAZ ⊂ I ′. So, points with
intensity i ∈ I ′ can be discarded and a set of points ROI′ can be defined by Eq. 7.

ROI′ = {(x, y)|i ∈ I ′}. (7)

Here, ∀x∀y IROI ′ : ROI′ → I ′ ¬∃ I−1
ROI ′ and ROI′ ⊂ ROI.

4.1 Clusterization of Region of Interest

In an image, all pixels are strongly correlated with its neighboring pixels due to the
nonlocal nature in the color intensity level. If the neighborhood of a point is small
with respect to the image resolution, the standard deviation of the grey scale intensity
within that neighborhood is expected to be small. In order to reduce the computational
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μ̂

(a) (b)

(c)

Fig. 8 a ROI after clusterization with 10 × 10 cluster, b Histogram of ˜ROI with mean μ̂, c Contour
plot of ˜ROI

time, the image can be divided into small clusters1 and the mean of intensity of the
clusters can be considered to be the homogenized grey scale level of an individual
cluster. Hence, the image is divided into several small square clusters with dimension
D = 10 × 10. After clusterization, ROI can be expressed as an equivalent class of
D by Eq. 8 [3]. The value of each point of ˜ROI can be considered based on Eq. 9.
The clusters of the ROI and the contour plot of the ˜ROI are shown in Fig. 8a and
Fig. 8c, respectively.

˜ROI := ROI/D,

∀x∀y Φ : ROI → ˜ROI ∃ Φ−1.
(8)

And,

Î(m, n) =
∑N

i=1 I(x,y)
N ,

ĨROI := {Î(m, n)|0 � Î(m, n) � 255},
∀x∀y ĨROI : ˜ROI → ĨROI ¬∃ I−1

˜ROI
.

(9)

1Segment of an image with very small dimension.
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Here, (m, n) is coordinate position of a point in ˜ROI, N is the number of pixels
in a cluster and I(x, y) is the intensity of a point in ROI.

4.2 Homogenization of the ROI

Figure 8b shows the histogram of ˜ROI. It is observed from Fig. 7a and Fig. 8b that
the distribution of the histogram of ROI and ˜ROI are similar. The mean of grey level
intensity is defined by μ ≈ μ̂. It is seen from Fig. 7b and Fig. 8c that the intensity
deviation of FAZ with respect to the surrounding spatial regions of ˜ROI is similar to
the one from ROI. As a result, the histogram of ˜ROI was divided into disjoint two

sets I ′
˜ROI

and I ′′
˜ROI

(Eq. 10). Hence, expectedly FAZ will reside within ˜ROI
′
which has

lower intensity level than μ̂. Figure 9 shows the contour plot of ˜ROI
′
after discarding

the pixels with higher intensity than μ̂.

I ′
˜ROI

= {i ∈ ĨROI |i � μ̂},
I ′′
˜ROI

= {i ∈ ĨROI |i � μ̂},
˜ROI

′ = {(x, y)|i ∈ I ′
˜ROI

}.
(10)

ROI

ROI
c

Fig. 9 Contour plot of ˜ROI
′
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Here, I ′
˜ROI

∪ I ′′
˜ROI

= ĨROI , I ′
˜ROI

∩ I ′′
˜ROI

= {φ}, ∀x∀y I
˜ROI

′ : ˜ROI
′ → I ′

˜ROI
¬∃ I−1

˜ROI
′

and ˜ROI
′ ⊂ ˜ROI.

4.3 Extracting the Candidate Region

According to Fig. 9, ˜ROI
′

is a multiply connected region [8]. FAZ is a simply con-

nected region with the simply connected part ˜ROI
′′ ⊂ ˜ROI

′
, which contains the FAZ

should be extracted as the candidate region. At first, (x̃c, ỹc), i.e. the location of the

global minima of ĨROI in ˜ROI (boundary ∂˜ROI
′
) is calculated. ˜ROI

′
is scanned par-

allel to x-axis. As shown in Fig. 10a for y = a two lines LH1 × a and LH2 × a can be
found. The projection of line LH1 × a, A1 and line LH2 × a, A2 on x-axis were evalu-
ated. If x̃c ∈ A1 then a set S(j,y)H will be formed with LH1 × a. Otherwise if x̃c ∈ A2,
S(j,y)H will be formed with LH2 × a. If none of them contain x̃c, S(j,y)H = {φ} i.e. both
LH1 × a and LH2 × a will be rejected. According to Fig. 10a, x̃c ∈ LH2 × a leads to

ROI ROIH

ROI
c

ROI
c

HA1 A2

LH1 × a LH2 × a

LV 1 × b

LV 2 × b

for y = a for x = b

B1

B2

∂ROI ∂ROIH

(a) (b)

(c) (d)
ROI

ROI
c

∂ROI

(x̃c, ỹc) (x̃c, ỹc)

(x̃c, ỹc)
ROI

ROI
c

LH2 × a

LV 1 × b

Fig. 10 a Contour plot of ˜ROI
′

before the algorithm was applied, b Contour plot of ˜ROI
′
H after

application of the first part of the algorithm, c Selection of the horizontal and vertical line containing

(x̃c, ỹc), d Contour plot of ˜ROI
′′

after application of the complete algorithm
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Fig. 11 Four circles
containing the FAZ in ROI

Circle with
Radius rh2

Circle with
Radius rh1

Circle with
Radius rv1

Circle with
Radius rv2

(xc, yc)

S(2,a)H = {LH2 × a}. Figure 10c shows selected LH2 × a in ˜ROI
′′
. The process men-

tioned above is applied for all y ∈ Y . ˜ROI
′
H (Fig. 10b) is formed with the product

of all S(j,y)H . Now, ˜ROI
′
H (boundary ∂˜ROI

′
H ) is scanned parallel to y-axis. As seen

in Fig. 10b, for x = b, the projection of line LV1 × b and LV2 × b on the y-axis B1

and B2, respectively were considered. If ỹc ∈ B1 then a set S(j,x)V will be formed with
LV1 × b. Otherwise if ỹc ∈ B2, S(j,x)V will be formed with LV2 × b. If none of them
contain ỹc, S(j,x)V = {φ} i.e. both LV1 × b and LV2 × b will be rejected. In Fig. 10a,
ỹc ∈ LV1 × b. As a result, S(1,b)V = {LV1 × a}. Figure 10c shows selected LV1 × b in
˜ROI

′′
. The process mentioned above is applied for all x ∈ X. The ˜ROI

′′
(Fig. 10c) is

formed with the product of all S(j,x)V . Figure 10d shows the finally extracted ˜ROI
′′
.

4.4 Determination of Initial Foveal Radius

As mentioned in Sects. 1 and 3.1, the FAZ can be defined as a slightly concave

and circular zone which was show in Fig. 12a. According to Figs. 10b and c, ˜ROI
′′

is an irregular shaped region. In order to define this region a group of radii from
concentric circles containing FAZ and the grey scale intensity distribution of the ˜ROI
can be observed (Fig. 11). FAZ certainly resides within the concave part of intensity
distribution of ˜ROI (Fig. 12a). As (x̃c, ỹc) stays almost at the concave part (Fig. 12b),
a set of lines thought (x̃c, ỹc) can be considered. In order reduce computational time,
only the vertical and horizontal lines through (x̃c, ỹc) are evaluated. Initial set of
radii for FAZ is referred as R̃if = {r̃i|r̃i ∈ R, i ∈ N} where, r̃i =

√
(x̃c − x̃)2 + (ỹc − ỹ)2,

x̃, ỹ ∈ ˜ROI
′′
, R is the set of real numbers and N is the set of natural numbers. As

the vertical and horizontal lines were considered, two sets R̃ifv = {r̃vi|r̃vi ∈ R, i ∈
{1, 2}} and R̃ifh = {r̃hi|r̃hi ∈ R, i ∈ {1, 2}} were obtained from observing the concave
behavior of the intensity along the lines LVi × x̃c and LHi × ỹc. According to Fig. 12c,
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intensity plot of FAZ

FAZ

(a) (b)

Actual
intensity

distribution

Actual
intensity

distribution

Envelop of
intensity

distribution
Envelop of
intensity

distribution

r̃v1
r̃v2 r̃h1 r̃h2

LH1 × ỹc

LV 1 × x̃c

Vertical line segement (LV 1 × x̃c) at x = x̃c Horizontal line segment (LH1 × ỹc) at y = ỹc

Fig. 12 a 3-D surface plot of intensity of ˜ROI, b Central horizontal and vertical lines LV1 × x̃c

and LH1 × ỹc on ˜ROI
′′
, c intensity plot of LV1 × x̃c and its polynomial envelop, d intensity plot of

LH1 × ỹc and its polynomial envelop

d the intensity increases monotonically with the increase in distance from (x̃c, ỹc).

The intensity of the ˜ROI
′′

is defined as Eq. 11.

∀x∀y I
˜ROI

′′ : ˜ROI
′′ → I

˜ROI
′′ ¬∃ I−1

˜ROI
′′ . (11)

The relation between the intensity function and the distances from ỹc and x̃c along
the lines LVi × x̃c and LHi × ỹc can be defined by Eq. 12 and Eq. 13 respectively

dv = {|ỹc − y| : r̃v1 � y � r̃v2},
dv ∝ (I(LVi×x̃c))

n1 .
(12)

Here, I(LVi×x̃c) ⊂ I
˜ROI

′′ , LVi × x̃c ⊂ ˜ROI
′′

and n1 ∈ R.

dh = {|x̃c − x| : r̃h1 � x � r̃h2},
dh ∝ (I(LHi×ỹc))

n2 .
(13)

Here, I(LHi×ỹc) ⊂ I
˜ROI

′′ , LHi × ỹc ⊂ ˜ROI
′′

and n2 ∈ R.
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It was seen in Fig. 12c, d the actual intensity distribution is highly erratic in nature.
For this reason, the intensity distribution is non-differentiable. In order to obtain a
differentiable envelop, it can be approximated with a polynomial which sustains the
fundamental profile of intensity. The distances from ỹc and x̃c are proportional to a
higher order of the intensities within the initial radii (Eqs. 12 and 13) and the intensity
is monotonically increasing. The two maxima mv1, mv2 and mh1, mh2 respectively in
each polynomial surrounding the global minima are traced which leads to find out
the radii. The initial radii are chosen with Eq. 14.

R̃ifv = {r̃vi = |ỹc − ỹmvi | : r̃vi ∈ R, i ∈ {1, 2}},
R̃ifh = {r̃hi = |x̃c − x̃mhi | : r̃hi ∈ R, i ∈ {1, 2}}. (14)

Here, (x̃c, ỹmvi) is the position of mvi and (x̃mhi , ỹc) is the position of mhi in ˜ROI
′′
.

R̃ifv and R̃ifh contains the radii in ˜ROI
′′
. The location of points (x̃c, ỹmv1), (x̃c, ỹmv2),

(x̃mh1 , ỹc), (x̃mh2 , ỹc) and (x̃c, ỹc) in ROI was calculated through the inverse mapping
given in Eq. 8. Equation 15 shows the location of the points in ROI.

Φ−1((x̃c, ỹmv1)) = (xc, ymv1),

Φ−1((x̃c, ỹmv2)) = (xc, ymv2),

Φ−1((x̃mh1 , ỹc)) = (xmh1 , yc),

Φ−1((x̃mh2 , ỹc)) = (xmh2 , yc),

Φ−1((x̃c, ỹc)) = (xc, yc).

(15)

The radii sets Rifv and Rifh in ROI were defined with Eq. 16.

Rifv := {rvi = |yc − ymvi | : rvi ∈ R, i ∈ {1, 2}},
Rifh := {rhi = |xc − xmhi | : rhi ∈ R, i ∈ {1, 2}}. (16)

A combined set of radii Rifvh = Rifv ∪ Rifh has been defined. Figure 11 shows
four circles with the radii from Rifvh in ROI. After sorting the elements of Rifvh , a
cardinally equivalent set with monotonically increasing order Rifvhs was with Eq. 17.

f : Rifvh → Rifvhs ,

Rifvhs = {ri|ri < ri+1, i ∈ {1, 2, 3, 4}},
Rifvh\Rifvhs = {φ}.

(17)

4.5 Fuzzy-Rule Based Scheme and Extraction
of the Fovea Center

It was mentioned earlier that the intensity level and boundary of the FAZ vary in every
retinal image. Therefore, the threshold should be selected according to the intensity
distribution of FAZ and its surrounding. As it is seen in Fig. 11, the FAZ is obscure
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region which does not have well defined edge encapsulating the FAZ region [5].
In order to overcome the difficulty a fuzzy-rule based segmentation technique was
incorporated. Fuzzy set theory and fuzzy logic provide powerful tools to manage
this type of issues [22]. From thorough observation, two linguistic variables can be
found.

1. Distance from the center
2. Intensity of the pixel

The possibility of a pixel to be a member of the FAZ decreases with the increase
in distance from the center of fovea. The intensity is darker in the FAZ than in
its neighborhood. The possibility of a pixel in order to be a member of the FAZ
is also dependent on its grey scale intensity. Darker pixels are more likely to be a
member of the FAZ than brighter pixels. As a result, a rule based fuzzy system
was designed in order to analyze and detect the center of the FAZ [22]. Fuzzy
systems use normalized versions of membership functions. There are many types
of fuzzy membership functions such as, triangles, trapezoids, bell curves, Gaussian,
Sigmoidal functions etc [7]. Due to simple formulas and computational efficiency,
both triangular and trapezoidal membership functions are popular in different fuzzy
logic based applications. In the current work trapezoidal membership functions were
applied in developing the fuzzification rule.

4.5.1 Classifcation Based on Radial Distance

Prior to applying fuzzy analysis ROI was divided into two disjoint regions based on
Eq. 18.

ROI1 := {(x, y)|(x − xc)
2 + (y − yc)

2 � r4},
r4 ∈ Rifvhs ,

ROIc
1 := ROI\ROI1.

(18)

Due to the possibility of a point (x, y) ∈ ROIc
1 ⊂ FAZ is trivial, ROIc

1 was dis-
carded for further analysis and treated as a background. The four radii in Rifvhs , ROI1

were divided into four different regions: central region C, first annular region A1,
second annular region A2 and third annular region A3 (Eq. 19). Their intensity sets IC ,
IA1 , IA2 and IA3 respectively are defined by Eq. 20. Figure 13 shows, all four regions
of ROI1.

C = {(x, y)|(x − xc)
2 + (y − yc)

2 � r2
1 }, A1 = {(x, y)|r2

1 < (x − xc)
2 + (y − yc)

2 � r2
2 },

A2 = {(x, y)|r2
2 < (x − xc)

2 + (y − yc)
2 � r2

3 }, A3 = {(x, y)|r2
3 < (x − xc)

2 + (y − yc)
2 � r2

4 }. (19)

∀x∀y IC : C → IC ¬∃ I−1
C ,∀x∀y IA1 : A1 → IA1 ¬∃ I−1

A1
,

∀x∀y IA2 : A2 → IA2 ¬∃ I−1
A2

,∀x∀y IA3 : A3 → IA3 ¬∃ I−1
A3

.
(20)
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Fig. 13 Four circular
regions C, A1, A2 and A3 of
ROI1 with ROIc

1

C

A1

A2

A3

ROIc1

ROI1

4.5.2 Fuzzification of the Boundaries of Radial Classes

All the four circles in Fig. 11 are co-centric and the center is (xc, yc) which is the
inverse mapping of (x̃c, ỹc) in ROI (Eq. 15). (xc, yc) is not the actual center of the
fovea. As the linguistic variables are related to the distance from the real center of
fovea, a region rather than a point should be given higher priority to be in a specific
class. Again, there is an uncertainty of a point to be in a specific region if it is residing
in the neighborhood of a common boundary of two regions. Hence, the trapezoidal
membership function is considered. Radii of all points of ROI1 can be calculated
and mapped to a set of radii: RROI1 with Eq. 21. RROI1 was mapped to a fuzzy set
using the membership function μ

Xi in Eq. 22 [29].

RROI1 :=
{

rROI1
|rROI1

= √
(x − xc)2 + (y − yc)2,

(x, y) ∈ ROI1.

}
(21)

μ
Xi : RROI1 → [0, 1]; X1 = C(fuzzy), X2 = A1(fuzzy),

X3 = A2(fuzzy), X4 = A3(fuzzy), i ∈ {1, 2, 3, 4}

μC(fuzzy) :=
⎧
⎨

⎩

1, 0 � r � r1 − γr1,

1 − r−r1+γr1

γr2
, r1 − γr1 < r � r1 + γ(r2 − r1),

0, r > r1 + γ(r2 − r1),

μA1(fuzzy) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, r � r1 + γ(r2 − r1),
r−r1+γr1

γr2
, r1 − γr1 < r � r1 + γ(r2 − r1),

1, r1 + γ(r2 − r1) < r � r2 − γ(r2 − r1),

1 − r−r2+γ(r2−r1)

γ(r3−r1)
, r2 − γ(r2 − r1) < r � r2 + γ(r3 − r2),

0, r > r2 + γ(r3 − r2),

(22)

μA2(fuzzy) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, r � r2 + γ(r3 − r2),
r−r2+γ(r2−r1)

γ(r3−r1)
, r2 − γ(r2 − r1) < r � r2 + γ(r3 − r2),

1, r2 + γ(r3 − r2) < r � r3 − γ(r3 − r2),

1 − r−r3+γ(r3−r2)

γ(r4−r2)
, r3 − γ(r3 − r2) < r � r3 + γ(r4 − r3),

0, r > r3 + γ(r4 − r3),
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Fig. 14 Membership grade
profile for the fuzzification
of C, A1, A2 and A3 based on
radial distance from (xc, yc)
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μA3(fuzzy) :=

⎧
⎨

⎩

0, r � r3 + γ(r4 − r3),
r−r3+γ(r3−r2)

γ(r4−r2)
, r3 − γ(r3 − r2) < r � r3 + γ(r4 − r3),

1, r � r4.

Here, γ is the overlapping ratio, r is the radial distance from (xc, yc) and
r1, r2, r3, r4 ∈ Rifvhs .

Using membership functions of Eq. 22 four crisp sets from Eq. 19 were fuzzyfied
and four fuzzy sets C(fuzzy), A1(fuzzy), A2(fuzzy) and A3(fuzzy) were deduced. Figure 14
shows the membership profile of the fuzzy regions of RROI1 based on radial distance.
If γ = 0, C(fuzzy), A1(fuzzy), A2(fuzzy) and A3(fuzzy) will be converted into crisp sets of
Eq. 19.

4.5.3 Fuzzification Based on Intensity

The intensity of pixels belong to ROI1 can be classified into three intensity regions
dark, gray and bright. As a result, the set of intensity of ROI1 can be defined with
Eq. 23.

∀x∀y IROI1 : ROI1 → IROI1 ¬∃ IROI1 ,

IROI1 = ID ∪ IG ∪ IB.
(23)

Here, ID, IG and IB are the sets of intensities of dark, gray and bright regions respec-
tively. The maximum and minimum intensity of ROI1, max{IROI1} and min{IROI1}
respectively, were obtained from IROI1 . max{IROI1} and min{IROI1} were defined as
the supremum of IB and infimum of ID, respectively. The supremum of ID, infimum
and supremum of IG and infimum of IB are not defined. As most of the members
of set C will be in the FAZ, initially the supremum of ID and infimum of IG can be
taken as sup ID = inf IG = ĪC , where, ĪC is the weighted average of IC which can be
calculated with Eq. 24.

ĪC =
∑|IC |

j=1 fjiCj
∑|IC |

j=1 fj
. (24)
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Here, fj is the frequency of intensity iCj in C and iCj ∈ IC . The intensity of ROI1

increases with radial distance from the center of fovea. As a result, the supremum
of IG and infimum of IB should be within A1 and A2. Initially, the supremum of IG

and infimum of IB is talken as sup IG = inf IB = ĪA1∪A2 , where, ĪA1∪A2 is the weighted
average of IA1 ∪ IA2 which was calculated with Eq. 25.

ĪA1∪A2 =
∑|A|

j=1 fj iAj
∑|A|

j=1 fj
,

A = A1 ∪ A2.
(25)

Here, fj is the frequency of intensity i
Aj in A and i

Aj ∈ I
A

. As supID, infIG, supIG

and infIB are not known a priori, ID, IG and IB should be considered to be fuzzy sets
instead of crisp sets. So, IROI1 can be fuzzyfied using the membership function μ

Yi

defined in Eq. 26. After fuzzification of IROI1 , three fuzzy sets ID(fuzzy), IG(fuzzy) and
IB(fuzzy) were obtained. Figure 15 shows the membership grade profile of the fuzzy
regions of IROI1 based on intensity.

μ
Yi : IROI1 → [0, 1]; Y1 = ID(fuzzy), Y2 = IG(fuzzy),

Y3 = IB(fuzzy), i ∈ {1, 2, 3},

μID(fuzzy) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, min{IROI1} � i � ĪC

−γ(ĪC − min{IROI1}),
1 − i−ĪC+γ(ĪC−min{IROI1 })

γ(ĪA1∪A2 −min{IROI1 }) , ĪC − γ(ĪC − min{IROI1})
< i � ĪC + γ(ĪA1∪A2 − ĪC),

0, i > ĪC + γ(ĪA1∪A2 − ĪC),

μIG(fuzzy) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i � ĪC − γ(ĪC − min{IROI1}),
i−ĪC+γ(ĪC−min{IROI1 })
γ(ĪA1∪A2 −min{IROI1 }) , ĪC − γ(ĪC − min{IROI1})

< i � ĪC + γ(ĪA1∪A2 − ĪC),

1, ĪC + γ(ĪA1∪A2 − ĪC)

< i � ĪA1∪A2

−γ(ĪA1∪A2 − ĪC),

1 − i−ĪA1∪A2 −γ(ĪA1∪A2 −ĪC)

γ(max{IROI1 }−ĪC)
, ĪA1∪A2 − γ(ĪA1∪A2 − ĪC)

< i � ĪA1∪A2

+γ(max{IROI1} − ĪA1∪A2),

0, i > ĪA1∪A2

+γ(max{IROI1} − ĪA1∪A2),

(26)
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Fig. 15 Membership grade
profile for fuzzification of ID,
IG and IB based on intensity
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μIB(fuzzy) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i � ĪA1∪A2

+γ(max{IROI1} − ĪA1∪A2),

i−ĪA1∪A2 −γ(ĪA1∪A2 −ĪC)

γ(max{IROI1 }−ĪC)
, ĪA1∪A2 − γ(ĪA1∪A2 − ĪC)

< i � ĪA1∪A2

+γ(max{IROI1} − ĪA1∪A2),

1, ĪA1∪A2

+γ(max{IROI1} − ĪA1∪A2)

< i � max{IROI1}.

Here, γ is the overlap ratio and i ∈ IROI1 .

4.5.4 Fuzzy Rule Based Classification

ROI1 was fuzzyfied according to Eq. 22 and Eq. 26 based on two linguistic variables;
radial distance and intensity, respectively. As the fovea is the darkest region in the
neighborhood of (xc, yc), these two linguistic variables should be combined together
in order to detect the pixels of fovea. So, the linguistic variables, fuzzy rules should
be extracted and applied on ROI1. During classifying foveal and non-foveal pixels,
a region based classification should be carried out [20]. The classified ROI1 was
expressed with ROI1(classified) with a bijective mapping given in Eq. 27.

∀x∀y ∃ζ : ROI1 → ROI1(classified). (27)

In Sect. 4.4, the four radii of ROI1 were selected according to Eq. 16 and Eq. 15;
where, radii were the distances between (x̃c, ỹc) and maximum points on the poly-
nomial envelop of the horizontal and vertical lines through (x̃c, ỹc). As a result, FAZ
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should be residing within C. The boundary of FAZ remains inside the inflectional
region of the polynomial envelop (Fig. 12). It is observed that for all retinal images,
r1 > r4

3 and FAZ mostly stays within the circle with radius r4/3. As seen in Fig. 12,
the intensity pattern increases with the distance to a certain high intensity level. So,
ROI1 was divided into three circular regions based on the distance and the grey
scale intensity. Using these information we can divide the ROI1 into following three
regions:

Fovea: Fovea is the region nearest to (xc, yc) with lowest intensity.
Semi Fovea: Semi fovea is the region surrounding the foveal region. Its intensity

exists within the inflection region of the intensity distribution of ROI1 (Fig. 12).
Outer Fovea: Outer Fovea is the outer most region of the ROI1 surrounding both

the semi foveal and foveal region. The intensity of the outer fovea is highest in ROI1.

ROI1 = F ∪ SF ∪ OF. (28)

Mathematically, the regions can be expressed as Eq. 28. Here, F, SF and OF are
the sets for Fovea, Semi Fovea and Outer Fovea, respectively. There is no well defined
boundary of these regions. Initially, they can be defined with Eq. 29. Figure 16 shows
the three initial regions.

F = {(x, y)|r � (r4/3)},
SF = {(x, y)|(r4/3) < r � (2r4/3)},
OF = {(x, y)|(2r4/3) < r � r4},

(29)

Here, r = √
(x − xc)2 + (y − yc)2. As the boundaries among F, SF and OF are

not determined based on any prior information from ROI1, these boundaries in
between two sets may overlap. Mathematically, sup F ∩ inf SF �= {φ} and sup SF ∩
inf OF �= {φ}. So, F, SF and OF should be treated as fuzzy sets F(fuzzy), SF(fuzzy) and
OF(fuzzy) with the membership function μ

Di (Eq. 30). Figure 17 shows the membership
grade profile of three destination fuzzy sets.

Fig. 16 Initial F, SF and
OF on ROI

F

SF

OF
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Fig. 17 Membership grade
profile for fuzzification of
destination sets F, SF and
OF
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μ
Di : ROI1 → [0, 1]; D1 = F(fuzzy), D2 = SF(fuzzy), D3 = OF(fuzzy), i ∈ {1, 2, 3},

μF(fuzzy) :=

⎧
⎪⎨

⎪⎩

1, 0 � r � r4
3 − γ r4

3 ,

1 − r− r4
3 +γ

r4
3

2γ
r4
3

, r4
3 − γ r4

3 � r � r4
3 + γ r4

3 ,

0, r > r4
3 + γ r4

3 .

μSF(fuzzy) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, r � r4
3 + γ r4

3 ,
r− r4

3 +γ
r4
3

2γ
r4
3

, r4
3 − γ r4

3 � r � r4
3 + γ r4

3 ,

1, r4
3 + γ r4

3 < r � 2r4
3 − γ r4

3 ,

1 − r− 2r4
3 +γ

r4
3

2γ
r4
3

, 2r4
3 − γ r4

3 < r � 2r4
3 + γ r4

3 ,

0, r > 2r4
3 + γ r4

3 ,

μOF(fuzzy) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, r � 2r4
3 + γ r4

3 ,

r− 2r4
3 +γ

r4
3

2γ
r4
3

, 2r4
3 − γ r4

3 < r � 2r4
3 + γ r4

3 ,

1, 2r4
3 + γ r4

3 < r � r4.

(30)

Here, γ is the overlap ratio.
Foveal pixels should be closer to the center of the fovea and the intensity should be

lower than any other parts of the retinal image. As (xc, yc) is not at the center of fovea,
rather, it should stay inside the neighborhood region. There is a possibility of a pixel
to be a member of F, which actually resides in SF and vice versa. Similar possibility
exists for a pixel in OF to be a member of SF and vice versa. The uncertainty of a pixel
to be a member of a single fuzzy set can be eliminated by applying a fuzzy if-then
rule based classification algorithm. As the classification of pixels can be based on
both the radial distance and intensity, fuzzy inference given in Table 1 were applied.

The above mentioned algorithm contains following steps [7],

• Fuzzy Matching
• Inference
• Combination
• Defuzzification
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Table 1 Inference table for detecting the center of fovea

C(fuzzy) A1(fuzzy) A2(fuzzy) A3(fuzzy)

ID(fuzzy) F F SF OF

IG(fuzzy) SF SF OF OF

IB(fuzzy) SF OF OF OF

Fuzzy Matching

In fuzzy matching, membership values of both μ
Xi (radial distance) and μ

Yi (inten-
sity) of every pixel were considered. The supremum minimum of μ

Xi and μ
Yi of a

particular pixel is taken as the membership function of that pixel in a specific class
of ROI1(classified) [14]. Mathematically, it can be expressed in terms of Eq. 31.

μ
Dik = sup min{μ

Xik ,μYik },
= μ

Xik ∧ μ
Yik .

(31)

Here, μ
Xik and μ

Yik are the membership functions of the pixel at (xk, yk) ∈ ROI1

obtained from Eqs. 22 and 26.“∧” is the “min” operator on fuzzy sets. If μ
Xik and

μ
Yik have more then one values, all combinations of (μ

Xik ,μYik ) are taken into con-
sideration.

Inference

As there are more than one values of membership functions in each combination
for every pixel, inference step is invoked in order to produce a conclusion based on
the values of membership functions in a combination and to assign the membership
value to a destination set [7]. In this step the inferencing in clipping method was
used. A collection of rules were applied to perform the inference step. The pattern
of the rules is shown in Eq. 32.

IF rk in Xi and ik in Yi THEN (xk, yk) in Di,

Symbolically, Xi and Yi → Di.
(32)

Here, rk ∈ RROI1 is the radial distance of a point (xk, yk) from (xc, yc), ik ∈ IROI1

is the intensity of the point (xk, yk) and Di ⊂ ROI1(classified). So, the t-norm based
proposition P(rk, ik) is given by Eq. 33 [14].

P(rk, ik) = Xi(rk) t Yi(ik),
P = Xi × Yi.

(33)
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Using this proposition in Eq. 33, D

′
i ⊂ Di can be obtained from Eq. 34.

D

′
i := (Xi × Yi) ◦ (Xi and Yi → Di),

:= (Xi × Yi) ◦ fc.
(34)

Here, fc is the fuzzy conjunction proposed by Mamdani [13]. fc was expressed as
Eq. 35.

fc(Xi(rk), Yi(ik)) := Xi(rk) ∧ Yi(ik),
∀ (rk, yk) ∈ RROI1 × IROI1 .

(35)

Alternatively, D

′
ik for a point (xk, yk) was expressed with Eq. 36.

D

′
ik := μ

Dik ∧ Di. (36)

All D

′
is were obtained using if-then rules based on the inferences of Table 1.

Combination

As the boundaries of the fuzzy sets are overlapped, rule based fuzzy system consists
of a set of rules for a point in the overlapping region. A particular input of a system
often satisfies multiple fuzzy rules. As a result, the combination step is required. For
a particular pixel at (xk, yk) more than one values of one D

′
ik can be obtained. So,

every value of D

′
ik was expressed in terms of D

′
ijk . Here, j is the index of the value.

If p is the number of values for corresponding D

′
ik , the combination set Dk can be

calculated using Eq. 37.

Dk =
3⋃

i=1

p⋃

j=1

D

′
ijk . (37)

Defuzzification

Defuzzification step is performed to obtain a crisp decision using the result of the
combination step. To obtain a new position for a pixel based on its position and
intensity in ROI1, the defuzzification is performed. In this step center of area (COA)
or centroid method is used to calculate the a new radius for every pixel. The center
of the area can be calculated using Eq. 38 [7].

rk(new) =
∑r4

m=0 μDk × rm∑r4
m=0 μDk

. (38)
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Here, μDk is the membership function of Dk and 0 � rm � r4. After defuzzi-
fication, the pixel (xk, yk) was moved to a new position (xk(new), yk(new)) with the
conditions given in Eq. 39 in ROI1(classified).

√
(xk(new) − xc)2 + (yk(new) − yc)2 = rk(new),

tan−1 yk−yc

xk−xc
= tan−1 yk(new)−yc

xk(new)−xc
.

(39)

For example, if the radial distance of a pixels at (xk, yk) from (xc, yc) is rk and
its intensity is ik , in Fig. 19a, the membership function μ

Xik has values μCrk
, μA1rk

.
In Fig. 19b, the membership function μ

Yik has values μIDik
, μIGik

. As a result, four
different combinations (μCrk

,μIDik
), (μCrk

,μIGik
), (μA1rk

,μIDik
) and (μA1rk

,μIGik
) can

be found. For combination (μCrk
,μIDik

) the supremum minimum μIDik
= μCrK

∧ μIDik

was considered as the membership value for the combination. Similarly, the member-
ship values for other combinations are calculated. To assign the membership value
of a combination to a destination set, a collection of rules can be extracted from
the inference table given in Table 1. For the pixel at (xk, yk) the collection of rules
is given in Table 2. For combination (μCrk

,μIDik
), as rk ∈ C(fuzzy) and ik ∈ ID(fuzzy),

the pixels (xk, yk) ∈ F(fuzzy) with the membership value μD1k = μFk = μCrk
∧ μIDik

.
Using the clipping method, D

′
11k = μD1k ∧ D1 is calculated. Figure 19c shows D

′
11k .

Similarly, the membership values were assigned to destination sets for other combi-
nations mentioned in Table 2. Figure 19d, Fig. 19e and Fig. 19f show D

′
21k , D

′
12k and

D

′
22k , respectively.
To obtain the combination set Dk , union of D

′
11k , D

′
12k , D

′
21k and D

′
22k are taken.

Figure 19g shows the union of all the Dijks. Figure 19h shows the set Dk . During
defuzzification the centroid of Dk was calculated. Figure 19h shows the center of
area rk(new) of Dk . After fuzzy inference and defuzzification were applied on ROI1,
all pixels of fovea and its neighborhood became classified into three distinguishable
regions, R(fovea), R(semi fovea) and R(outer fovea) for foveal pixels, semi foveal pixels
and outer foveal pixels respectively; where, R(fovea) ∪ R(semi fovea) ∪ R(outer fovea) =
ROI1(classified). Figure 18 shows three distinguishable regions of ROI1(classified).

Table 2 Collection of rules extracted from inference for (xk, yk)

Combination IF THEN WITH D

′
ijk

(μCrk
,μIDik

) rk ∈ C(fuzzy) and
ik ∈ ID(fuzzy)

(xk, yk) ∈ F(fuzzy) μD1k = μFk =
μCrk

∧ μIDik

μD1k ∧ D1 =
D

′
11k

(μCrk
,μIGik

) rk ∈ C(fuzzy) and
ik ∈ IG(fuzzy)

(xk, yk) ∈
SF(fuzzy)

μD2k = μSFk =
μCrk

∧ μIGik

μD2k ∧ D2 =
D

′
21k

(μA1rk
,μIDik

) rk ∈ A1(fuzzy) and
ik ∈ ID(fuzzy)

(xk, yk) ∈ F(fuzzy) μD1k = μFk =
μA1rk

∧ μIDik

μD1k ∧ D1 =
D

′
12k

(μA1rk
,μIGik

) rk ∈ A1(fuzzy) and
ik ∈ IG(fuzzy)

(xk, yk) ∈
SF(fuzzy)

μD2k = μSFk =
μA1rk

∧ μIGik

μD2k ∧ D2 =
D

′
22k
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R(fovea)

R(semi fovea)

R(outer fovea)

ROI1(classified)

Fig. 18 ROI1(classified) pixels with three distinguishable regions R(fovea), R(semi fovea) and
R(outer fovea) plotted on ROI

4.6 Calculation of the Center of Fovea

Members of R(fovea) reside within the neighborhood of (xc, yc) and also have lowest
intensities in ROI1(classified) and ROI1. So, in order to detect the center of fovea, only
R(fovea) was considered. All pixels in R(fovea) were inversely mapped to their previous
position and these points can be taken as the set of foveal pixels F(actual) with Eq. 40.
Figure 20a shows the F(actual) on a white background.

∀(xk(new), yk(new)) ∈ R(fovea),

ζ−1 : R(fovea) → F(actual).
(40)

Here, R(fovea) ⊂ ROI1(classified), F(actual) ⊂ ROI1. The center of fovea (xfo, yfo)

can be calculated by calculating the intensity centroid of F(actual) [15, 17]. Figure 20a
shows (xfo, yfo) in F(actual) and Fig. 20b shows (xfo, yfo) in ROI. The grey scale
intensity of F(actual) can be expressed with Eq. 41.

∀x∀y IF(actual) : F(actual) → IF(actual) ¬∃ I−1
F(actual)

. (41)

5 Detection of the Boundary of FAZ

Figure 21 shows center of fovea and detected foveal region in three different retinal
images. As seen in Fig. 21, foveal region R(fovea) is a non-compact set. As a result, a
closed boundary cannot be defined. The fovea is typically a circular region containing
all foveal pixels. The FAZ has a very smooth transition from central region towards
outward direction. Therefore, a scheme is needed to detect the region where FAZ
fades out to blood vessels.

Gradient Vector Flow based active contour model (GVF snake) uses a gradient
vector flow as its external force which is a dense vector fields derived from images by
minimizing a certain energy functional in a variational framework. The minimization
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Fig. 19 Steps of fuzzy analysis to determine center of fovea

is achieved by solving a pair of decoupled linear partial differential equations that
diffuses the gradient vectors of a gray-level or binary edge map computed from the
image [28]. The advantages of GVF snake are its invariance to the initial contour
and its ability to converge towards the boundary concavity whether the initial snake
is taken inside; outside or across the object boundary. The range of the GVF snake
is also larger. So, GVF based snake is chosen to find the boundary of FAZ on fundus



332 R. Rahman et al.

F(actual)

(xfo , yfo)

Center of 
Fovea

(a) (b)

Fig. 20 a F(actual) and center of fovea (xfo, yfo) on a white background, b Center of fovea (xfo, yfo)

on ROI

(xfo , yfo )

R(fovea )

Fig. 21 Detected F(actual) and (xfo, yfo) on ROI of three different retinal images

images. As the FAZ is usually a compact circular region, a circle is taken as the
initial snake. Pixels on the circle can be expressed as z(s) = [x(s), y(s)], s ∈ [0, 1].
The dynamic energy functional of the snake traveling through the spatial domain of
the ROI can be expressed with Eq. 42 [28].

E =
∫ 1

0

1

2
[α|z′(s, t)|2 + β|z′′(s, t)|2] + Eext(z(s))ds. (42)

Here, α and β are the parameters for controlling the tension and rigidity, respec-
tively. Eext(z(s)) is the external energy function. For GVF based snake, Eext(z(s)) =
v̄(x, y). v̄(x, y) is the gradient vector flow (GVF), which can be extracted from
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IROI(x, y). In order to extract v̄(x, y) from IROI(x, y), equilibrium solution of the
system of partial differential equation in Eq. 43 was considered as v̄(x, y) [27].

∂v
∂t

= μ∇2v − (v − ∇f )|∇f |2. (43)

Here, μ is the regularization parameter [28] and f is an edge map derived from
IROI(x, y) which is larger near the image edge. IROI is the intensity of f which can
be calculated using Eq. 44 [27]. As, the intensity value in the FAZ is lower, the
vector field diverge for the FAZ. The initial snake towards FAZ was considered in
the inverted image [255 − IROI(x, y)].

± Gσ(x, y) ∗ [255 − IROI(x, y)]. (44)

Here, Gσ(x, y) is a gaussian window with standard deviation σ. Minimizied E
should satisfy the Euler equation given in Eq. 45 [28].

αz′′(s, t) − βz′′′(s, t) − ∇Eext(z(s)) = 0. (45)

For GVF based snake, Eq. 45 can be expressed as Eq. 46 [12, 27].

αz′′(s, t) − βz′′′(s, t) + κv̄(x, y) = 0. (46)

Here, κ is the weight of v̄(x, y). Every control point on the initial snake is guided
with v̄(x, y). In every iteration all points on the snake is updated to minimize the
energy [5]. This process is performed until a stopping criteria is reached. To deter-
mine the boundary of FAZ, a circle C0 = {z(s)|z(s) = [x(s), y(s)], s ∈ [0, 1]} with
center at (xfo, yfo) was considered in the semi foveal region as the initial snake.
Figure 22a shows initial snake on ROI. In every iteration, a contour Ci = {z(s)|z(s) =
[x(s), y(s)], s ∈ [0, 1]} is obtained which encloses an area Si ⊂ ROI; where, Si is a
closed set and Ci → Si. Figure 22b shows snakes after several iteration. The intensity
of Si can be given by Eq. 47.

∀z(s) I
Si : Si → I

Si ¬∃I
Si . (47)

During extracting FAZ, μIF(actual)
i.e. the average of IF(actual) was considered as the

stopping criteria. As the initial snake was placed outside the F, the average of I
S0 ,

μIS0
> μIF(actual)

. At every iteration, the snake Ci approaches FAZ and μISi
, mean of

I
Si approached to μIF(actual)

. Whenever, μISi
� μIF(actual)

, the snake Ci was considered to
be the boundary of FAZ and enclosed area Si was considered to be FAZ. Figure 22c
shows final area of FAZ.
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Initial Snake

Snake of 
Different 
Iteration

(xfo , yfo)

Fig. 22 a Initial snake on ROI, b Snakes after several iterations, c Final area of FAZ with center
of fovea (xfo, yfo)

6 Result Analysis

The above mentioned process is applied on 20 fundus images. All of the images are
of same resolution. The algorithm was implemented with MATLAB.

6.1 Results of the Center of Fovea Detection

In the process of detecting the center of fovea, overlap ratio γ (please see:
Eqs. 22, 26, 30), may be varied to change the overlapping regions of the membership
functions and the detection can be more precise. The value of γ for precise detection
of the center of fovea varies from person to person. It is observed in all image that
the center of fovea is correctly detected when the ratio of overlap for all membership
functions are equal. So, the overlap ratios for detecting the center of fovea were taken
equal for all the membership functions. The fuzzy detection process was applied for
different values of γ on all images.
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Fig. 23 Variation of the position of the center of fovea (xfo, yfo) with overlap ratio γ of three
different person shown in yellow dots. The red dots show the manually detected centers of foveae

Figure 23 shows variation in the position of (xfo, yfo) (yellow dots) with γ in
retinal image of three different persons. It also exhibits manually detected fovea
center on every image (red dots). The manually detected points helps us to validate
the performance of the proposed method. In the case of Person 1, the center of
fovea converges towards the actual center with increase of γ. Difference between
position of the center of fovea for γ = 0.5 and γ = 0.7 seems to be insignificant.
For lower γ, some of the foveal pixels are not considered for calculation of the
center of fovea. For Person 2, the center of fovea converges towards the prescribed
center with the decrease of γ. Difference among positions of the center of fovea for
γ = 0, γ = 0.3 and γ = 0.5 are minimal. For this retinal image, all points of the
foveal zone lies within the boundary of initial circle. When γ > 0.5 the more noisy
points from semi fovea region become inevitable during calculating the center of
fovea. For Person 3, the center of fovea is insensitive of γ. All of the foveal pixels lie
within the initial foveal boundary. All pixels of the foveal zones are clearly classified.
After evaluating sensitivity of γ for all sample retinal images, 0.3 � γ � 0.5 is
considered as the optimal range of overlapping ratio for the detection of the center
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Fig. 24 Consistent center of fovea in different retinal images of same eye of same person. The
yellow dots shows the center of fovea detected by proposed method. The red dot shows manually
detected centers of fovea

of fovea. Figure 24 shows the consistency of the detected center of fovea in different
retinal images acquired from the same eye of the same person. It was seen that in
all images of Person 1, the center of fovea resides inside the brighter annular region
visible at the central fovea. For Person 2, the center of fovea resides on the ring
in all images. In case of Person 3, there is no such ring and the center of fovea
stays at the center of the FAZ for the suggested range. Figure 24 also compares
the calculated centers (Cf (calc) = (xof , yof ), yellow dots) with the manually detected
centers (Cf (manual) = (xof (m), yof (m)), red dots). The relative difference between the
calculated center and the manually detected center can be quantified using Eq. 48.

v = Δr

2r1
. (48)

Here, Δr = √
(xof − xof (m))2 + (yof − yof (m))2 and r1 ∈ Rifvhs in (Eq. 17) is the radius

of the inner fovea circle introduced in Sect. 4.4 and shown in Fig. 12.
Table 3, exhibits deviation of the calculated fovea centers from the manually

detected centers in Fig. 24. The variation of the center calculated is very small com-
pared to the resolution of the image. The r1 considered for the normalization of the
variation is the radius of the smallest which must contain the center of fovea. It also
provides a very small area of variation compared to any other boundary considered
during the detection process of center of fovea. The maximum possible deviation



Intelligent Detection of Foveal Zone … 337

Table 3 Measured deviation from manually detected fovea center, v

Image 1 Image 2 Image 3

Person 1 0.019 0.026 0.026

Person 2 0.035 0.035 0.036

Person 3 0.012 0.01 0.01

(Eq. 48) is 1.0 when both the points are located on the periphery of the circle at two
opposite points on the circle diameter. This should only happen when there is a very
high degree of disagreement between the manually selected point and the calculated
point. A complete agreement with the proposed technique will superimpose the cal-
culated center on top of the manually detected centre and that would make value
of v to be 0. Therefore, the dynamic range v is : 0 � v � 1. It is observed that, the
variation inside the smallest area was very small for all the images. Therefore, the
detected centers and the manually selected centers have direct agreement for all the
images considered for this study. The deviation presented in the table are also very
consistent on multiple images of the same person. As a result, the location of the
calculated centers for each person on multiple images are very precise.

6.2 Results of Detection of Boundary of FAZ

In order to detect the boundary of the FAZ accurately, GVF snake (active contour
model based on GVF) was applied where tension α, rigidity β and weight of external
GVF κ were varied precisely. The contour containing pixels with average intensity
almost equal to the average intensity of the pixels of F(actual) was considered to
be FAZ. As a result, boundary of FAZ will also vary with the changing γ. As the
boundary of the fovea should be dependent on the image of the fovea and β, the
rigidity parameter reduces the sensitivity of the external force and κ was chosen to
be 1. Effect of other parameters are explained in the following sections.

6.2.1 Effect of γ on FAZ

Figure 25 shows variation of FAZ with γ; keeping α, β and κ fixed. As seen in the
images, generally area of FAZ increases with the increase in overlap ratio γ. With
the increase in γ, more pixels with higher intensity become members of F(actual).
As a result, μIF(actual)

increases. The area of FAZ increases with the stopping crite-
ria μISi

� μIF(actual)
for detecting FAZ. For Person 1 and Person 2 the area of FAZ

increases with γ < 0.6. If γ > 0.6 the shape of FAZ gets distorted. For Person 3,
FAZ does not get distorted for γ > 0.6 but the area increased gradually. In Fig. 25
for Person 1, Person 2 and Person 3 with γ < 0.3 FAZ does not enclose completely
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Fig. 25 Variation of γ in different retinal images with α = 0, β = 0 and κ = 1

the fovea region. For γ = 0.3 the FAZ encloses complete foveal region. For γ > 0.3,
FAZ encloses complete foveal region as well as some of its surrounding area. From
observing all samples it was found that 0.2 < γ < 0.4 leads to the best result for
detection of FAZ.

6.2.2 Effect of α on FAZ

Figure 26 shows the variation in the contours with α (yellow contour) and the man-
ually detected FAZ boundary (red contour). It is clearly seen that with increasing α,
the first snake C1 (given the initial snake C0), comes closer to the center of fovea
(xof , yof ). As α is the drift towards (xof , yof ), C1 moves towards (xof , yof ) with the
increment of α. So, it will take less number of iteration to determine the FAZ if
FAZ ⊂ S1. If α is too high and C1 moves too close to (xof , yof ), i.e. FAZ ⊃ S1. As
a result, FAZ will enclose a part of the actual Foveal Avascular Zone. In all these
cases for 0 � α � 5, C1 was seen to converge towards the manually detected FAZ
boundaries.

Figure 27, shows the effect of high α on different retinal images. It is seen that,
FAZ becomes smaller as α increases. It was observed that, for 0 � α � 5, C1 always
encloses FAZ (See Fig. 26). For 7 > α > 5, either FAZ ⊂ S1 or FAZ ⊃ S1 for all
the images. For α > 7, FAZ ⊃ S1. So, FAZ is smaller. Due to noise in GVF in semi
foveal region, shape of the boundary of FAZ became distorted. α can be used to
obtain correct shape of the FAZ. Figure 28 shows, effect of α on the shape of the
boundary of FAZ. As seen in Fig. 28, the shape of FAZ becomes more circular with
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Fig. 26 Effect on contour with increasing α; γ = 0.3, β = 0 and κ = 1. The yellow contours are
the snakes generated by GVF enclosing the FAZ. The red contour is the manually detected FAZ

the increase in α. For α > 5, the size of FAZ shrinks. In order to avoid distortion
and retain the proper area of FAZ, the optimum interval for α is 3 � α � 5.

6.2.3 Effect of β on FAZ

In most of the cases, 3 � α � 5 solves the issue of distortion of the boundary of
FAZ. If the GVF is too noisy, the rigidity β of the initial has to be increased. So that
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Fig. 27 Effect of increase in α on area of FAZ with γ = 0.3, β = 0 and κ = 1
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Fig. 28 Correction of distorted boundary of FAZ by changing α; γ = 0.3, β = 0 and κ = 1
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Fig. 29 Effect of increase in β on FAZ with α = 0 & 4, γ = 0.3 and κ = 1

the snake will be less sensitive to the noisy GVF. In Fig. 29, Effect of increase in β
with α = 0 and α = 4 in three different images of three different persons are shown.

The image of Person 1 has high noise in GVF. As a result, the detected FAZ
with α = 0 and β = 0 has deformed boundary. As shown in Fig. 29, for α = 4, the
boundary of FAZ has improved but not fully undistorted. As seen in Fig. 29, with the
increase in β, the boundary of FAZ has further improved. For β � 200, the boundary
of FAZ becomes more circular. For β � 400, boundary of FAZ become insensitive
to GVF and becomes completely circular. The image of Person 2 has one of the least
noisy GVF. As a result, detected boundary of FAZ is almost circular with α = 0 and
α = 4. As β increases the boundary of FAZ becomes more circular with α = 0 but
the enclosed area of FAZ decreases with increase in β for α = 4. By observing all
the images of retina it was found that the effect of increase in β does not affect all
the images with low noise GVF. In some images the area of FAZ decreases slightly,
in other images the FAZ is insensitive to β. It is also observed that in images with
low noise GVF and sensitivity to β, the FAZ for 200 � β � 300 contains the Foveal
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Avascular Zone. The image of Person 3 has a noisy GVF that can be processed with
only 3 � α � 5. As seen in Fig. 29, for α = 4 and α = 0, the boundary of FAZ is
circular. Increase in β has little effect on the boundary of FAZ. As a result, in order to
avoid distortion of the boundary of FAZ, the optimum range of β is 200 � β � 300.

The current work does not depend on any conventional image pre-processing
techniques. The foveal region is evaluated based on an intelligent image segmentation
algorithm. Exact similar kind of work has not been addressed in the literature. For
the purpose of comparison, the outputs from the algorithm were compared with the
data obtained from rigorous inspection. The foveal region and its center were located
on the test images and compared with the results from the proposed method. The
reference data are 100 % accurate since they were evaluated manually. From the
above discussion it was clearly seen that the proposed method was able to achieve
very good accuracy based on a reasonably large dataset.

7 Conclusion

In this work the major effort was given to extract the foveal zone from a retinal
image. The fuzzy logic based algorithm is implemented in order to classify the can-
didate region for fovea. This approach helps us to detect the fovea zone as well as
fovea center. Besides performing biomedical image analysis, there have been several
methods developed for different biometric applications. One of the most popular is
the “face detection” [23–25]. The proposed method in this paper will be a signifi-
cant contribution to the field of “retinal image detection” which is another growing
major field in biometrics. The proposed technique does not utilizes any image fill-
tration although it showed very high agreement with the manually detected fovea
centers and boundaries of all images it was applied on. The accuracy of the center
detection technique is dependent on formation of fuzzy inference table. For most of
the images the inference tables are similar. In order to capture the boundary of fovea
zone, the output from fuzzy classifier is analyzed further. In this regard, gradient vec-
tor flow based boundary detection method is applied. The gradient flow algorithm
traces for the boundary of fovea zone iteratively by reaching the global minimum
of energy functional. This approach demands a thorough analysis of different para-
meters involved. In this paper we did some study on these parameters. However, the
more detail analysis can be done in future works. The proposed method exhibited
promising performance based on decent agreement with manually detected fovea
centers and boundaries.
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Registration of Digital Terrain Images
Using Nondegenerate Singular Points

A. Ben Hamza

Abstract Registration of digital elevation models is a vital step in fusing sensor
data. In this chapter, we present a robust topological framework for entropic image
registration using Morse singularities. The core idea behind our proposed approach
is to encode a digital elevation model into a set of nondegenerate singular points,
which are the maxima, minima and saddle points of the Morse height function.
An information-theoretic dissimilarity measure between the Morse features of two
misaligned digital elevationmodels is thenmaximized to bring the elevation data into
alignment. In addition, we show that maximizing this dissimilarity measure leads to
minimizing the total length of the joint minimal spanning tree of two misaligned
digital elevation data models. Illustrating experimental results are presented to show
the efficiency and registration accuracy of the proposed framework compared to
existing entropic approaches.

Keywords Registration · Tsallis entropy · Morse theory · Minimal spanning tree

1 Introduction

Information-theoretic divergence measures [1] have been successfully applied in
many areas including image retrieval [2], multimedia protection [3], text categoriza-
tion [4], image edge detection [5, 6], and image registration [7–11]. The latter will be
the focus of the present chapter. Image registration or alignment refers to the process
of aligning images so that their details overlap accurately [7, 8]. Images are usually
registered for the purpose of combining or comparing them, enabling the fusion of
information in the images. Roughly speaking, the image alignment problem may
be formulated as a two-step process: the first step is to define a dissimilarity mea-
sure that quantifies the quality of spatial alignment between the fixed image and the
spatially transformed moving image, and the second step is to develop an efficient
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optimization algorithm for maximizing this dissimilarity measure in order to find
the optimal transformation parameters. Recently, much attention has been paid to
the image registration problem due in large part to its importance in a variety of
tasks including data fusion, navigation, motion detection, and clinical studies [7, 8].
A wide range of image registration techniques have been developed for many dif-
ferent types of applications and data, such as mean squared alignment, correlation
registration, moment invariant matching, and entropic image alignment [9–12].

Multisensor data fusion technology combines data and information frommultiple
sensors to achieve improved accuracies and better inference about the environment
that could be achieved by the use of a single sensor alone. In this chapter, we introduce
a nonparametric multisensor data fusion algorithm for the registration of digital
elevation models (DEMs). The goal of geo-registration is to align a fixed DEM to
the geographic location of a moving DEM using global or feature-based techniques
[13–17]. Our proposed method falls into the category of feature-based techniques
which require that features be extracted and described before two DEMs can be
registered. In [15], a robust multi-temporal DEM registration technique for detecting
terrain changes was proposed using the least trimmed squares estimator with the least
Z-difference algorithm. The approach yields high accuracy in both matching and
change detection. In [16], a registration method for DEM pairs was introduced using
the elevation difference residuals and the elevation derivatives of slope and aspect.
The method represents the complete analytical solution of a three-dimensional shift
vector between two DEMs. A comprehensive review of DEM registration methods
can be found in [17].

The proposed framework consists of two major steps, namely topological feature
extraction and rigid point feature registration. The first step involves extractingMorse
singularity features [18–20] from the DEMs represented as 3D surfaces. These geo-
metric features form the so-called Reeb graph [20], which is a topological represen-
tation of a digital elevation surface and has the advantage to be stored or transmitted
with a much smaller amount of data. Inspired by the success of information-theoretic
measures in image registration, we propose in the second step the use of the Jensen-
Tsallis (JT) divergence [21] as a dissimilarity measure between Morse features of
two misaligned DEMs. The JT divergence is defined in terms of the non-extensive
Tsallis entropy, which can be estimated using the length of the minimal spanning
tree (MST) over Morse feature points of a DEM. Then, the registration is performed
by minimizing the length of a joint MST which spans the graph generated from the
overlapping misaligned DEMs.

The rest of the chapter is organized as follows. The next section provides a
brief overview of the Jensen-Tsallis dissimilarity measure and its main properties.
Section3 describes the proposed feature extraction approach for DEM data using
Morse theory. In Sect. 4, we propose a topological framework for DEM registration,
and discuss in more detail its most important algorithmic steps. In Sect. 5, we provide
experimental results to show the robustness and the geo-registration accuracy of the
proposed method. And finally, we conclude in Sect. 6.



Registration of Digital Terrain Images Using Nondegenerate Singular Points 347

2 Background

2.1 Jensen-Tsallis Divergence

Let X be a continuous random variable with a probability density function f defined
on R. Shannon’s entropy is defined as

H( f ) = −
∫

f (x) log f (x) dx, (1)

and it is a measure of uncertainty, dispersion, information and randomness. The
maximum uncertainty or equivalently minimum information is achieved by the uni-
form distribution. Hence, we can think of the entropy as a measure of uniformity
of a probability distribution. Consequently, when uncertainty is higher it becomes
more difficult to predict the outcome of a draw from a probability distribution. A
generalization of Shannon entropy is Rényi entropy [22] given by

Rα( f ) = 1

1 − α
log

∫
f (x)α dx, α ∈ (0, 1) ∪ (1,∞). (2)

Another important generalization of Shannon entropy is Tsallis entropy [23–25]
given by

Hα( f ) = 1

1 − α

(∫
f (x)α dx − 1

)
= −

∫
f (x)α logα f (x) dx, (3)

where logα is the α-logarithm function defined as logα(x) = (1 − α)−1(x1−α − 1)
for x > 0. This generalized entropy was first introduced by Havrda and Charvát
in [23], who were primarily interested in providing another measure of entropy.
Tsallis, however, appears to have been principally responsible for investigating and
popularizing the widespread physics applications of this entropy, which is referred to
nowadays as Tsallis entropy [24]. More recently, there has been a concerted research
effort in statistical physics to explore the properties of Tsallis entropy, leading to a
statistical mechanics that satisfies many of the properties of the standard theory [24].
It is worth noting that for α ∈ (0, 1], Rényi and Tsallis entropies are both concave
functions; and for α > 1 Tsallis entropy is also concave, but Rényi entropy is neither
concave nor convex. Furthermore, both entropies reduce to Shannon entropy as α →
1, and are related by

Hα( f ) = 1

1 − α
[exp{(1 − α)Rα( f )} − 1]. (4)

Figure 1 depicts Tsallis entropy of a Bernoulli distribution p = (p, 1 − p), for dif-
ferent values of the entropic index. As illustrated in Fig. 1, the measure of uncertainty
is at a minimum when Shannon entropy is used, and for α ≥ 1 it decreases as the
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Fig. 1 Tsallis entropy
Hα(p) of a Bernoulli
distribution p = (p, 1 − p)
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parameter α increases. Furthermore, Tsallis entropy attains a maximum uncertainty
when its exponential order α is equal to zero.

For x, y > 0, the α-logarithm function satisfies the following property

logα(xy) = logα(x) + logα(y) + (α − 1) logα(x) logα(y).

If we consider that a physical system can be decomposed in two statistical indepen-
dent subsystems with probability density functions f1 and f2, then using Eq. (5) it
can be shown that the joint Tsallis entropy is pseudo-additive

Hα( f1, f2) = Hα( f1) + Hα( f2) + (1 − α)Hα( f1)Hα( f2), (5)

whereas the joint Shannon and Rényi entropies satisfy the additivity property:

H( f1, f2) = H( f1) + H( f2), (6)

and

Rα( f1, f2) = Rα( f1) + Rα( f2). (7)

The pseudo-additivity property implies that Tsallis entropy has a nonextensive prop-
erty for statistical independent systems, whereas Shannon and Rényi entropies have
the extensive property (i.e. additivity). Furthermore, standard thermodynamics is
extensive because of the short-range nature of the interaction between subsystems
of a composite system. In other words, when a system is composed of two statisti-
cally independent subsystems, then the entropy of the composite system is just the
sum of entropies of the individual systems, and hence the correlations between the
subsystems are not accounted for. Tsallis entropy, however, does take into account
these correlations due to its pseudo-additivity property. Furthermore, many objects in
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nature interact through long-range interactions such as gravitational or unscreened
Coulomb forces. Therefore the property of additivity is very often violated, and
consequently the use of a nonextensive entropy is more suitable for real-world appli-
cations.

Definition 1 Let f1, f2, . . . , fn be n probability density functions. The JT diver-
gence is defined as

D( f1, . . . , fn) = Hα

(
n∑

i=1

λi fi

)
−

n∑

i=1

λi Hα( fi ), (8)

where Hα(·) is Tsallis entropy, and λ = (λ1, . . . , λn) be a weight vector such that∑n
i=1 λi = 1 and λi ≥ 0.

Using the Jensen inequality, it is easy to check that the JT divergence is nonnega-
tive for α > 0. It is also symmetric and vanishes if and only if the probability density
functions f1, f2, . . . , fn are equal, for all α > 0. Note that the Jensen-Shannon diver-
gence [26] is a limiting case of the JT divergence when α → 1.

Unlike other entropy-based divergence measures such as the Kullback-Leibler
divergence, the JT divergence has the advantage of being symmetric and general-
izable to any arbitrary number of probability density functions or data sets, with
a possibility of assigning weights to these density functions [21]. The following
result establishes the convexity of the JT divergence of a set of probability density
functions [25].

Proposition 1 For α ∈ [1, 2], the JT divergence is a convex function of f1, . . . , fn.

In the sequel, we will restrict α ∈ [1,2], unless specified otherwise. In addition to
its convexity property, the JT divergence is an adapted measure of disparity among
n probability density functions as shown in the next result.

Proposition 2 The JT divergence achieves its maximum value when f1, . . . , fn are
degenerate density functions, that is fi is a Dirac delta function.

Proof The domain of the JT divergence is a convex polytope in which the vertices
are degenerate probability density functions. That is, the maximum value of the JT
divergence occurs at one of the extreme points which are the degenerate density
functions. �

3 Feature Extraction

A digital elevation model (DEM) is a raster of elevation values, and consists of an
array of points of elevations, sampled systematically at equally spaced intervals [27].
We may represent a DEM as an image I : Ω ⊂ R

2 → R (see Fig. 2left), where Ω is
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Fig. 2 Representation of a digital elevation model in 2D and 3D

a bounded set (usually a rectangle) and each image location I (x, y) denotes a height
value. DEMs are usually constructed from aerial photographs and require at least
two images of a scene.

3.1 Morse Singular Points

A digital elevation model I : Ω ⊂ R
2 → Rmay be viewed as a 3D surfaceM ⊆ R

3

defined as M = {(x, y, z) : z = I (x, y)} where the coordinates x, y are the latitude
and longitude of a DEM, respectively, and z = I (x, y) is the height value on the
DEM domain Ω , as illustrated in Fig. 2right. The surface M is given by the Monge
patch defined by r : Ω → M such that r(x, y) = (x, y, I (x, y)). Note that the patch
r covers all M (i.e. r(Ω) = M), and it is regular, i.e. rx × ry 	= 0 or equivalently,
the Jacobian matrix of r has rank two.

Surfaces consist of geometric and topological data, and their compact
representation is an important step towards a variety of computer vision and medical
imaging applications. Geometry dealswithmeasuring and computing geometric con-
cepts, whereas topology is concerned with those features of geometry which remain
unchanged after twisting, stretching or other deformations of a geometrical space.
Surface singularities are prominent landmarks and their detection, recognition, and
classification is a crucial step in computer vision and 3D graphics [18].

Height Function Let h : M → R be a height function defined by h(p) = I (x, y)

for all p = (x, y, I (x, y)) ∈ M, i.e. h is the orthogonal projection with respect to
the z-axis.. A point p0 onM is a singularity or critical point of h if p0 = r(x0, y0) =
(x0, y0, I (x0, y0)), for some (x0, y0) ∈ Ω , and the gradient of h ◦ r at (x0, y0) van-
ishes, i.e. ∇(h ◦ r(x0, y0)) = 0. A singularity p0 is nondegenerate if the Hessian
matrix ∇2(h ◦ r(x0, y0)) is nonsingular. We say that the height function is a Morse
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Fig. 3 Nondegenerate singular points: minimum (left), maximum (center) and saddle (right)

function if all its singular points are nondegenerate, that is minimum, maximum and
saddle points as depicted in Fig. 3. The main theory about nondegenerate singulari-
ties is Morse theory that describes the topology changes of the level sets of Morse
functions at those singularities [18, 28]. Moreover, Morse theorem is an important
result which says that a small, smooth perturbation of aMorse function yields another
Morse function. The density means that there is a Morse function arbitrarily close to
any non-Morse function [28].

Level Sets Around Morse Critical Points The level sets of the height function are
the intersections of the surface M with planes orthogonal to the z-axis, as shown in
Fig. 4. The original manifold may then be reconstructed if we know all its sections by
these parallel planes (i.e. the surface is the union of these planes). Clearly, the level
sets of the height functionmay have isolated points, or curves, ormay contain an open
subset of the plane. Furthermore, the level sets may be connected or disconnected,
and the curves may have complicated Fig. 4 singularities.

Nondegenerate singularities are isolated, i.e. there cannot be a sequence of non-
degenerate singularities converging to a nondegenerate singularity x ∈ M. A level

Fig. 4 Cross-sections of the
height function on a torus
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Fig. 5 Level curve Γa (left); Subsurface Ma (center); Subsurface and level curve (right)

Fig. 6 Evolution of the subsurface Ma as a changes

set f −1(a) of a smooth, real-valued function f on M at a value a may be com-
posed of one or many connected components. Morse deformation lemma states that
if no critical points exist between two level sets of f , then these two level sets are
topologically equivalent and can be deformed onto one another [18]. In particular,
they consist of the same number of connected components. Moreover, Morse theory
implies that topological changes on the level sets occur only at critical points. This
property can be illustrated by considering the subsurfaceMa consisting of all points
at which f takes values less than or equal to a real number a:

Ma = {x ∈ M : f (x) ≤ a}. (9)

Denote by Γa = f −1(a) the set of points where the value of f is exactly a. Note that
when a is a regular value, the set Γa is a smooth curve of M and is the boundary of
Ma , as illustrated in Fig. 5.

Figure6 shows the evolution of the subsurface Ma as a changes, when f is a
height function. If a < minx∈M{ f (x)}, thenMa is the empty set. And as we increase
the parameter a, the subsurface Ma changes until it covers the entire surfaceM.

4 Proposed Framework

In this section, a topological framework for DEM registration is presented. The
proposed feature-based approach encodes a DEM into a set of Morse singularities.
Then the JT dissimilarity measure is optimized in an effort to quantify the difference
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between two misaligned DEMs. We show that maximizing the JT divergence is
tantamount to minimizing the total edge length of the joint minimal spanning tree
that spans the graph generated from theMorse singularities of twomisalignedDEMs.

4.1 Problem Statement

Let I1, I2 : Ω ⊂ R
2 → R be two misaligned digital elevation models. The goal of

geo-registration is to align the fixed I1 to the geographic location of the moving I2
by maximizing a dissimilarity measure D between I1 and T(t,θ,s) I2, where T(t,θ,s) is
a Euclidean transformation with translation parameter vector t = (tx , ty), a rotation
parameter θ , and a scaling parameter s. In other words, the registration problem may
be succinctly stated as

(t�, θ�, s�) = arg max
(t,θ,s)

D(I1, T(t,θ,s) I2), (10)

or equivalently

(t�, θ�, s�) = arg max
(t,θ,s)

D(U , T(t,θ,s)V), (11)

where U and V are two sets of feature vectors extracted from I1 and I2 respectively.
To geo-register the fixed DEM to the moving DEM, we propose in this section a
feature-based approach by extracting Morse singular points from these DEMs, and
then quantifying the difference between them via the JT divergence as a dissimilarity
measure [29].

4.2 Algorithm

The goal of our proposed approach may be described as follows: Given two mis-
aligned DEMs to be registered, we first extract their Morse singularity features, and
we compute a joint MST connecting their Morse features, then we optimize the JT
divergence to bring these DEMs into alignment. Without loss of generality, we con-
sider the transformation T�, where � = (t, θ), i.e. a Euclidean transformation with
translation parameter vector t = (tx , ty), and a rotation parameter θ . In other words,
for x = (x, y) we have T�(x) = Rx + t, where R is a rotation matrix given by

R =
(

cos θ sin θ

− sin θ cos θ

)
. (12)



354 A. Ben Hamza

Let I1 and I2 be the fixed and moving DEMs to be registered. The proposed regis-
tration algorithm may now be concisely summarized in the following three steps:

(i) Find the Morse singularity features U = {u1, . . . , uk} and V = {v1, . . . , vm} of
I1 and I2, respectively.

(ii) Transform V to a new set W = T�V = {w1, . . . , wm}
(iii) Find the optimal parameter vector �� = (t�, θ) of the JT divergence

�� = argmax
�

D(U ,W), (13)

where
D(U ,W) = Ĥα(U ∪ W) − λĤα(U) − (1 − λ)Ĥα(W), (14)

and λ = k/(k + m).

Figure7 displays the block diagram of the proposed framework.

4.3 Feature Extraction

Weapplied the algorithm introduced byTakahashi et al. [19] to extractMorse singular
points from the fixed and moving DEMs. This algorithm extracts the singularity
points that follow the criteria of topological integrity of the surface of a DEM. This
means that the singular points must satisfy the Euler-Poincaré formula, which states
that the number of maxima, minima and saddles satisfy the topological relation given
by

χ = #minima − #saddlepoints + #maxima = 2. (15)

DEMs Morse Features

Feature 
Extraction Optimization

Fig. 7 Block diagram of the proposed approach
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Fig. 8 The 8-neighborhood
of a vertex v

v

neighbor

v

The extraction algorithm is based on the 8-neighbormethod,which compares a vertex
v with its 8-adjacent neighbors by computing the height difference between v and
each of its neighbors, as illustrated in Fig. 8.

In addition, to ensure that the potential singular points satisfy the Euler-Poincaré
formula, it is necessary to study the changes on the contours considering their heights.
The classification of a feature point is based on the topological variations between the
cross-sectional contours. According to this criterion, a feature point v is classified as
a maximum point if a new contour appears at v. Therefore, a peak is given by a point
that is higher than all other points in its neighborhood. A feature point v is classified
as a minimum point if an existing contour disappears at v. Therefore, a pit is given
by a point that is lower than all other points in its neighborhood. A pass occurs when
a contour is divided or two contours are merged at v. Figure9 displays the Morse
singular points of a DEM and the corresponding MST connecting all these features.

4.4 Entropy Estimation Using Minimal Spanning Tree

Let V = {v1, v2, . . . , vn} be a set of feature vectors (e.g., Morse singularities), where
vi ∈ R

d (e.g., d = 3 for 3D data). A spanning tree E is a connected acyclic graph
that passes through all features and it is specified by an ordered list of edges ei j

connecting certain pairs (vi , v j ), i 	= j , along with a list of edge adjacency relations.
The edges ei j connect all n features such that there are no paths in the graph that lead
back to any given feature vector. The total length LE(V) of a tree is given by

LE(V) =
∑

ei j ∈E
‖ei j‖. (16)

The minimal spanning tree E� is the spanning tree that minimizes the total edge
length LE(V) among all possible spanning trees over the given features
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Fig. 9 Morse singular points
of a DEM (left), and its
corresponding MST (right)

maxima
saddles
minima

maxima
saddles
minima

L�(V) =
∑

ei j ∈E�

‖ei j‖ = min
E

LE(V). (17)

Figure10a, b depict an example of MSTs with 2D and 3D feature vectors, respec-
tively.

The set V is called a random feature set if its elements are random variables with
a probability density function f . It can be shown that

lim
n→∞

L�(V)

nα
= β

∫
f (x)αd x a.s. (18)

where the constant β plays a role of bias correction [11]. Hence, we may define an
estimator Ĥα of Tsallis entropy as
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Fig. 10 MSTs in 2D and 3D using random data of 128 samples

Ĥα(V) = 1

1 − α

[
L�(V)

β nα
− 1

]
. (19)

4.5 Optimization

Recall from Proposition 1 that the JT divergence is convex when α ∈ [1,2]. Using
(19) and (13), it is clear that solving

�� = argmax
�

D(U , T�V), (20)

may be reduced to solving
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�� = argmax
�

Ĥα(U ∪ T�V)

= argmax
�

1

1 − α

[
L�(U ∪ T�V)

β (k + m)α
− 1

]
, (21)

or equivalently solving the minimization problem


� = argmin
�

L�(U ∪ T�V)

= argmin
�

∑

ei j ∈E�

‖ei j‖, (22)

where E� is the MST of U ∪ T�V , and ‖ei j‖ is the edge length which depends on the
transformation parameter � and is given by

‖ei j‖ =
√

(I1(xi ) − I1(x j ))2 + (T� I2(xi ) − T� I2(x j ))2

=
√

(I1(xi ) − I1(x j ))2 + (I2(Rxi + t) − I2(Rx j + t))2, (23)

where xi = (xi , yi ) ∈ Ω , and x j = (x j , y j ) ∈ Ω .
Hence, the DEM registration is performed by minimizing the total length of the

minimum spanning tree which spans the joint MST generated from the overlapping
feature vectors of the fixed and moving DEMs. The minimization problem given by
Eq. (22) may be solved using the method of steepest descent [30]. Let �r be the value
of the objective function given by Eq. (22) at the r th iteration. At each iteration, the
update rule is given by

�r+1 = �r + α dr = �r − α
∑

ei j ∈E�

∇‖ei j‖, (24)

where dr = −∑
ei j ∈E� ∇‖ei j‖ is the direction vector of steepest descent that is the

direction for which the objective function will decrease the fastest, and α is a scalar
which determines the size of the step taken in that direction. Taking the gradient of
the edge length with respect to � yields

∇‖ei j‖ = 1

‖ei j‖
(

I2(Rxi + t) − I2(Rx j + t)
)

×
(
∇ I2(Rxi + t) · JRxi +t − ∇ I2(Rx j + t) · JRx j +t

)
, (25)
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where JRx+t denotes the Jacobian matrix of the function

(tx , ty, θ) → (x cos θ + y sin θ + tx ,−x sin θ + y cos θ + ty), (26)

which yields

JRx+t =
(
1 0 −x sin θ + y cos θ

0 1 −x cos θ − y sin θ

)
(27)

5 Experimental Results

In this section experimental results are presented to show the much improved per-
formance of the proposed method in DEM registration. We carried out three sets
of experiments. In the first experiment, we show that Tsallis entropy gives the best
results in comparison with Shannon and Rényi entropy estimators. In the second
experiment, we calculate the total length of the joint MST and then estimate Tsallis
entopy for two misaligned DEMs. And, in the third experiment we test the per-
formance of the proposed gradient descent algorithm in estimating the registration
parameters. In all the experiments, the tuning-parameter α of Tsallis entropy estima-
tor was set to α = 1.5.

5.1 Tsallis Entropy Estimator

In the first experiment we tested the performance of Tsallis entropy in comparison
with Shannon and Rényi entropies, and the results are listed in Table1. A graphical
comparison of these entropies is also shown in Fig. 11, where the best performance
of Tsallis entropy is clearly illustrated. We used the same α = 1.5 for Rényi entropy.
This better performance of Tsallis entropy is consistent with a variety of DEMs used
for experimentation, and alsowith different values of the parameter α. Sample DEMs
are shown in Fig. 12.

Table 1 Estimation of
Shannon, Rényi and Tsallis
entropies for different
rotation angles

Angle θ Shannon
entropy

Rényi
entropy

Tsallis
entropy

15◦ 4.8560 4.7834 1.8171

30◦ 5.0303 4.9020 1.8276

45◦ 5.0774 4.9322 1.8302

60◦ 5.0863 4.9404 1.8309
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Fig. 11 Graphical
comparison between
Shannon, Rényi and Tsallis
entropy estimators
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5.2 Joint MST Length and Tsallis Entropy Estimation

The second experiment deals with two misaligned DEMs I1 and I2 as shown in
Fig. 13left and right respectively, where for ease of visualization, only the maxima
features are displayed. We calculated the total length of the joint MST and we esti-
mated Tsallis entopy for two misaligned DEMs. Tsallis entropy estimator for the
feature sets of the fixed and moving DEMs is given by

Ĥα(U ∪ T�V) = 1

1 − α

[
L�(U ∪ T�V)

β (k + m)α
− 1

]
, (28)

where k and m are the numbers of Morse singular points of I1 and I2, respectively.
The numerical results are depicted in Table2. As expected, note that both the

length of the joint MST and Tsallis entropy increase as the rotation angle between
the fixed and moving DEMs increases.

We also tested the sensitivity of the JT divergence to the entropic index α and the
bias parameterβ. As can be seen in Fig. 14left, for a fixed value ofα the JT divergence
is a decreasing function of the bias parameter. On the other hand, for a fixed value
of the bias parameter the JT divergence slightly increases when the entropic index
increases, but it stabilizes for larger values of α, as shown in Fig. 14right.

5.3 Estimation of the Registration Parameters

In the third experiment, we estimated the parameters corresponding to the spatial
transformation between the fixed and moving DEMs. We applied a Euclidean trans-
formation to the moving DEM with known parameters (tx , ty, θ). To geo-register
these two DEMs, we then applied the iterative gradient descent algorithm described
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Fig. 12 Sample DEMs used for experimentation along with their surface representations
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Fig. 13 Misaligned DEMs:
fixed DEM (left) and moving
DEM (right). For visual
simplicity, only maxima
features are displayed maxima

maxima

Table 2 Total length and
Tsallis entropy estimator of
the joint MST

Angle θ L�(U ∪ T�V) Ĥα(U ∪ T�V)

15◦ 823.9646 8.9509

30◦ 951.1633 9.2380

60◦ 1064.5076 9.4632

in Sect. 3 to find the optimal parameters t�
x , t�

x and θ�. The registration results are
shown in Table3, where the errors between the original and the estimated transfor-
mation parameters are also listed. The estimated values indicate the effectiveness and
the accuracy of the proposed algorithm in geo-registering elevation data. The joint
MST of the fixed and moving are displayed in Fig. 15left and also in Fig. 15right,
where the overlapping DEM surfaces are shown as well. Note that for the sake of
clarity, only the maxima features are displayed.
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Fig. 14 JT divergence as a function of the bias parameter β (left) and the entropic index α (right)

Table 3 Registration results

� �� Error = � − ��

tx ty θ t�x t�y θ� te
x te

y θe

2 4 0 2.64 3.20 1.26 0.64 0.80 1.26

2 4 5 2.02 3.65 5.70 0.02 0.35 0.70

5 10 15 5.77 9.53 15.34 0.77 0.47 0.34

4 8 20 3.46 7.38 20.87 0.54 0.62 0.87
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Fig. 15 Joint MST of fixed
and moving DEMs (left).
Overlapping surfaces and
joint MST of fixed and
moving DEMs (right). For
visual simplicity, only
maxima features are
displayed

Maxima of fixed DEM
Maxima of moving DEM

6 Conclusions

In this chapter, we proposed a topological approach for entropic registration of dig-
ital elevation models using Morse singularities. The geo-registration is achieved
by minimizing the total length of the joint minimal spanning tree of the fixed and
the moving elevation models. The main advantages of the proposed approach are:
(i) Tsallis entropy provides a reliable data estimator, (ii) the proposed approach is
simple and computationally fast, and (iii) the experimental results provide accurate
registration results and clearly indicate the suitability of the proposed method for
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geo-registration of 3D terrain elevation data. Our future work direction is to extend
the proposed singularity-based framework to 3D shape matching and retrieval by
designing efficient shape signatures that will capture both the geometric and topo-
logical structure of 3D shapes.
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Visual Speech Recognition with Selected
Boundary Descriptors

Preety Singh, Vijay Laxmi and Manoj Singh Gaur

Abstract Lipreading is an important research area for human-computer interaction.
In this chapter, we explore relevant features for a visual speech recognition system by
representing the lip movement of a person during speech, by a set of spatial points on
the lip boundary, termed as boundary descriptors. In a real time system, minimizing
the input feature vector is important to improve the efficiency of the system. To reduce
data dimensionality of our feature set and identify prominent visual features, we apply
feature selection technique, Minimum Redundancy Maximum Relevance (mRMR)
on our set of boundary descriptors. A sub-optimal feature set is then computed from
these visual features by applying certain evaluation criteria. Features contained in
the sub-optimal set are analyzed to determine relevant features. It is seen that a small
set of spatial points on the lip contour is sufficient to achieve speech recognition
accuracy, otherwise obtained by using the complete set of boundary descriptors. It
is also shown experimentally that lip width and corner lip segments are major visual
speech articulators. Experiments also show high correlation between the upper and
lower lips.

1 Introduction

Lipreading has garnered much interest in the area of human-computer interaction in
manifold applications. Visual speech plays an important part in speech recognition
systems where the audio signal is absent or of unacceptable quality, as maybe the case
in presence of background noise [65]. It can be used to provide visual commands
to hand-held devices in the presence of background noise. Visual inputs from the
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lip can be used for speech-to-text conversion for the benefit of hearing impaired
individuals. Considering that digital media is also becoming a powerful weapon
against crime, lipreading can aid visual surveillance technology of CCTV cameras
and help decipher the spoken word in case the audio signal is degraded [11].

In a lipreading system, the region-of-interest (ROI) is the mouth, from where
features are derived and classified to recognize speech. Visual feature extraction can
be broadly classified into two categories:

• Bottom-up approach: In this approach, features consist of pixel intensities derived
directly from the image of the mouth. This approach is motivated by the fact that
visual cues from visible speech articulators, such as teeth, tongue, oral cavity and
facial muscles, provide supplemental information to the audio signal [66]. How-
ever, since the dimensionality of data involved is high, appropriate transformation
of pixel values has to be performed for feature reduction. The pixel-based approach
also suffers from normalization problems caused by lighting and translation.

• Top-down approach: This approach takes a priori information of the lip shape into
consideration. Features are derived from a statistical model fitted to the image.
These may be shape-based features, usually derived from the contour of the lip.
These include geometric features like lip height and width [50], Fourier descriptors
or moments [70], templates [9, 29], Active contour or snakes [34] or Active shape
models [10, 17, 40, 43]. While the top-down approach is less computationally
expensive due to a limited number of features, its drawback lies in the fact that it
lacks information from other visible speech articulators.

The bottom-up and top-down approaches can be combined to yield a robust feature
vector [15, 41]. This technique may, however, result in the feature vector becom-
ing quite large, requiring dimensionality reduction techniques. The obtained feature
vectors may contain the pixel gray levels [22], principal components of pixel inten-
sities [6] or coefficients obtained from transform-based compression.

To lessen the processing time of any real-time system, the number of input para-
meters should be as small as possible. Dealing with the large amount of data present
in images of the mouth poses computational as well as storage challenges. The com-
plete set of visual features might contain redundant information which may affect
visual speech recognition adversely [4]. Reducing data dimensionality and extract-
ing meaningful information from a large feature space is a challenging task. This
can be done either by feature extraction or feature selection methods [27]. While the
former transforms the features into a new feature space, feature selection retains the
physical meaning of the features.

In this chapter, we use the top-down approach for extracting visual features from
images of the mouth while speech is uttered. We determine a set of points, referred
to as boundary descriptors, defining the shape of the lip. In our set of boundary
descriptors, all features may not be relevant towards the target class and redundancy
might also be present. Rather than exploring all possible subsets of features, which
is computationally expensive, we use feature selection to compute relevant features.
This assists in identifying prominent visual cues (which contribute towards increasing
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the performance of the lipreading system) and removes redundancy from the feature
set. Our focus is to reduce the input feature set, but not at the cost of degrading the
performance of the speech recognition system.

Minimum Redundancy Maximum Relevance (mRMR), a feature selection method
[49] is employed to select and grade features contained in the set of boundary descrip-
tors. We form subsets of the ranked features and classify them to attain a sub-optimal
set of features. Determination of the sub-optimal set is done by taking into account
the size of the feature set and various evaluation metrics. Correlation between various
boundary descriptors is analyzed using classification results.

The main contributions of this chapter are as follows:

• A sub-optimal set of boundary descriptors is derived through feature selection.
• Sub-optimal feature set is analyzed to show that lip width is a vital visual cue.
• Significance of the center and corner lip sectors is shown through experiments.
• It is demonstrated that a high correlation exists between the upper and lower lips.

The chapter is structured as follows: Sect. 2 gives related literature in the area
of visual speech recognition. Section 3 presents the methodology of our approach.
Section 4 describes our experimental setup while Sect. 5 gives an analysis of the
results. Finally, Sect. 6 concludes the chapter.

2 Related Work

Research in visual speech recognition has used various features and transforma-
tion techniques. The main focus is to curtail the number of features and provide
good classification accuracy. Arsic and Thiran [3] select meaningful visual features
using mutual information. Principal Component Analysis (PCA) is applied to mouth
images and components with highest mutual information are used for classification.
The best accuracy reported is 89.6 %. Feng and Wang [18] use Dual Tree Complex
Wavelet Transform (DTCWT) to ascertain lip texture features. These are extracted
by computing Canberra distances between the attributes in adjacent frames.

Jun and Hua [33] apply Discrete Cosine Transform (DCT) followed by Linear
Discriminant Analysis (LDA) to extract visual features. The best accuracy obtained
is 65.9 % with 90 co-efficients. In [42], feature extraction is done using Active Shape
Model, Active Appearance Model and pixel intensities. Best accuracy of 44.6 % is
realized with twenty principal components.

Lan et al. [38] extract two sets of visual features: low-level DCT features and
shape and appearance information. Features are derived from z-score normalized
features. Feature vectors are formed using LDA in conjunction with hyper-vectors.
Comparison of the two feature vectors shows that the latter technique performs
significantly better. In another recent work [39], the authors have shown that best
results are achieved with a non-frontal view. This could be due to the fact that lip
gestures are more pronounced in this view.
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Faruquie et al. [17] extract the lip contour using Active Shape Model (ASM).
Twelve geometric dimensions are extracted to characterize the shape of the lip.
These include four heights in outer contour and eight heights in inner contour. Eight
weights of eigenvectors are also considered. Seymour et al. [58] compare different
transform-based feature types. They make use of the fast discrete curvelet transform
for classifying isolated digits contained in the XM2VTS database. Experiments are
performed using clean and corrupted data. It is reported that performance degrades
when jitter or compression is introduced to the clean videos. However, DCT coeffi-
cients prove to be quite robust in case of blurred videos.

Gurban and Thiran [26] compute a visual feature vector which includes 64 low-
frequency components along with their first and second temporal derivatives. Mutual
information (MI) is computed and while MI between features and the class label is
maximized, features are penalized for redundancy. Using these features, subsets are
formed. Their performance is compared to features obtained by application of LDA.
Experimental results show that maximum MI (MMI) features outperform MI and
LDA features.

Huang et al. [30] propose the use of an infrared headset for the task of audio-visual
speech recognition. They consider the use of an audio-visual headset which focuses
on the speaker’s mouth and employs infra-red illumination. For visual features, 100
DCT coefficients are taken into account from the region-of-interest. Intra-frame Lin-
ear Discriminant Analysis (LDA) is then applied followed by Maximum Likelihood
Linear Transformation (MLTT). The final feature vector is of dimension 41. Experi-
ments are performed on Large Vocabulary Continuous Speech Recognition (LVCSR)
and digits in both settings, studio as well as with headset. The word error rate (WER)
for visual only recognition for digit database is 47.1 % (studio setting) and 35.0 %
(using headset). For LVCSR, visual-only results are not available.

Noda et al. [46] use a convolutional neural network (CNN) to extract visual fea-
tures for the task of audio-visual speech recognition. The neural network is trained
to recognize phonemes from input images of the mouth. A Japanese audio-visual
dataset is used with speech data from six males, each recording 400 words. Average
visual based phoneme recognition rates range from 43.15 to 47.91 % depending on
size of input image.

3 Proposed Methodology

Visual features extracted for speech recognition can consist of pixel intensities of
the region-of-interest, in this case, the mouth, [43, 52] or geometrical/shape based
features defining the lip contour [17, 71]. We have used a set of points lying on the lip
contour which define the movement of the lip boundary as it moves during utterance
of speech. Prominent features are then extracted from these visual cues and classified
for isolated word recognition. The steps involved in our methodology are as follows:
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• Determination of boundary descriptors.
• Application of Minimum Redundancy Maximum Relevance method for feature

selection.
• Formation of feature subsets using ranked features.
• Classification of feature sets for visual speech recognition.
• Computation of sub-optimal feature set.
• Identification of prominent features.

3.1 Extraction of Boundary Descriptors

In each image contained in the video sequence of a speech sample of a speaker,
the Point Distribution Model (PDM) [25] is adopted to obtain the lip contour and
six key-points are determined on it. These include the lip corners, three points on
the upper lip arch and the bottom most point on the lower lip arch. We interpolate
twenty points between all the key-points, resulting in 120 points (P1, P2, . . . , P120)
on the lip contour, called boundary descriptors [25]. The [xy] co-ordinates of each
boundary descriptor give a set of 240 visual features, defined by feature set B:

B = 〈x1 y1 x2 y2 . . . x120 y120〉 (1)

A mean statistic model of the lip is created by taking the mean of the [xy] co-
ordinates of all points over the training images. This model, when placed over the
input image, deforms to take the shape of the lip and stops when a change in intensity
is sensed. This gives the lip contour in the input image. In each input image, the
set of boundary descriptors, B, is computed, as described above. These boundary
descriptors are shown in Fig. 1.

P20 P60

P100

P80P1

P40

P110 P90

Fig. 1 Extracted Boundary Descriptors
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3.2 Feature Selection

As the number of boundary descriptors is large, we apply feature selection on it to
reduce data dimensionality. This will remove features which are redundant and select
only relevant features. Feature selection method Minimum Redundancy Maximum
Relevance (mRMR) [61, 62] is applied on our set of visual features, B, for ranking
features according to their relevance towards the target word class. mRMR is based
on the concept of mutual information. It ranks features taking into account two
important criterion:

1. Maximum relevance towards the target class.
2. Minimum correlation between features, which is a cause of redundancy.

We aim to reduce the size of our input feature vector so that its usage in a real-
time speech recognition system minimizes the time utilized for processing. Applying
feature selection will help identify features which are irrelevant or redundant.

3.2.1 Minimum Redundancy Maximum Relevance

Minimum Redundancy Maximum Relevance (mRMR) [49] method uses mutual
information between the attributes and class as well as between the attributes. It
selects a subset of features such that:

• The feature set has the largest dependency on the target class, maximizing rele-
vance.

• The features are not highly correlated, thus eliminating redundancy.

Let x and y be two variables with marginal probabilities p(x) and p(y) respec-
tively. Let p(x, y) be their joint probability. Then, the mutual information, I , between
x and y, can be described by:

I(x, y) =
∑

i, j

p(xi , y j )log
p(xi , y j )

p(xi )p(y j )
(2)

Let, F = { f1, f2 . . . fn} represent the complete feature set of all n features. Let,
S be the desired subset, S ⊂ F, containing k (k ≤ n) features. It is desired that the
feature subset should satisfy the minimal redundancy condition, minWI . That is,
selected features are such that they are mutually exclusive:

min WI , WI = 1

k2

∑

i, j∈S

I( fi , f j ) (3)

Let the set of classes be represented by C = {C1, C2 . . . Cm}. The relevance
between target class C and feature fi , given by IC, fi , should be maximum. Thus,
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the total relevance of all features in S should be maximized to satisfy the condition
of maximum relevance:

max VI , VI = 1

k

∑

i∈S

I(C, fi ) (4)

Combining Eqs. 3 and 4 gives us features favouring minimum-redundancy-
maximum-relevance. We have done this by computing mutual information difference
(MID) criterion (Eq. 5):

MID = max(VI − WI) (5)

An incremental algorithm is then applied to rank the feature set, S. Using this
approach, we extract top 30 boundary descriptors from the complete set of 240
features contained in the set of boundary descriptors, B [60].

3.3 Formation of Feature Subsets

Feature subsets are constructed using the ranked 30 features. Each feature subset is
denoted by Bk , where k gives the number of top features contained in the subset.
Feature set F1 contains one feature, which is the feature ranked highest by mRMR.
We now add the next ranked feature to this set to form feature set F2 (consisting of
the top two features). In this manner, feature subsets B1, B2, . . . , B30 are built [64].
The process of building subsets can be seen in Fig. 2. These feature subsets are now
classified to determine the sub-optimal feature subset. This is done using certain
evaluation metrics, described in the following subsections.

3.4 Evaluation Metrics

Classification of the entire set of boundary descriptors and the feature subsets is
evaluated using the metrics defined below:

the top ranked feature

First feature set Add second ranked 

next feature set

Second feature setContinue adding 
next ranked feature

to form subsets

Start with f1, 
feature f2 for 

B30 = {f1, f2,...f30}

B1 = {f1}

B2 = {f1, f2}

Fig. 2 Formation of feature subsets
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• Precision (P): It is the ratio of correctly identified samples (True Positives) to
all samples classified as existing in that class (sum of True Positives and False
Positives):

P = TruePosi tives

TruePosi tives + FalsePosi tives
(6)

• F-measure (F): While accuracy and word error rate are commonly used metrics, F-
measure [44] is also a popular metric used in many classification problems [5, 19,
35, 69]. It can indicate the accuracy of a test [44]. It is computed as the harmonic
mean of precision and recall (R):

F = 2 × Precision × Recall

Precision + Recall
(7)

where, recall (R) is defined by:

R = TruePosi tives

TruePosi tives + FalseNegatives
(8)

• ROC Area (A): The overall performance of a system can be quantified by the area
A [67] under the Receiver Operating Characteristic (ROC) curve.

3.5 Determination of Sub-optimal Feature Subset

The complete set of boundary descriptors B is classified using classification algo-
rithms in WEKA [28]. We also classify the feature subsets B1 . . . B30 and compare
their results with the results obtained by using the complete set B. A set of features
can be termed as optimal if it is small in size but does not degrade the recognition
accuracy.

To establish a sub-optimal feature set, few terms are defined. Let, the F-measure
value of the complete feature set, B, containing n features be represented by Fn [60,
64]. Let, Fk be the F-measure value of a feature subset, Bk , comprising of k features,
where, k < n. The difference in F-measure value of Bk with respect to B is given by
�k , where:

�k = Fn − Fk

Fn
(9)

For an enhanced recognition performance of feature subset Bk , it is desired that
Fk >> Fn and �k < 0. Positive values of �k (Fk < Fn) are indicative of degradation
in the recognition rate of the feature subset. Thus, positive values are not prefer-
able. However, if they do not exceed a certain threshold, they may be taken into
consideration. �k = 0 indicates a behaviour identical to the base vector, B.
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For a feature subset to qualify as sub-optimal, we set thresholds for its �k value:

• For �k < 0, |�k | ≥ 0.1
• For �k > 0, |�k | ≤ 0.1

Only those feature sets which satisfy the threshold restrictions are considered. We
also define ηk , the variation in feature length of feature subset as compared to the
base feature vector, as:

ηk = n − k

n
(10)

A considerable value of ηk (ηk → 1 for k → 0 ) is indicative of large reduction in
feature length space. Minimal length of the subset, without risking the recognition
accuracy, is a desirable requirement of a sub-optimal feature subset. Establishing a
sub-optimal feature vector is done in two steps:

1. Feature subsets satisfying threshold values of �k value are identified.
2. Optimality Factor, Ok , is computed for identified feature subsets. This is defined

as the product of feature size variation (ηk), precision (P) and ROC Area (A) of
the feature subset [60, 64].

Ok = ηk ∗ P ∗ A (11)

It can be noted that the Optimality Factor, Ok , takes into account all performance
evaluators: Precision, ROC Area (maximum is desirable) and ηk , which is repre-
sentative of reduction in feature length. High value of Ok is indicative of the fact
that atleast one of the performance metric of the subset is sufficiently large for it
to supersede other subsets. Feature subset with largest value of Optimality Factor is
termed as the most sub-optimal feature vector.

4 Experimental Setup

We recorded an audio-visual database, influenced by some of the earlier recorded
databases, AVLetters [42], OuluVS [72] and Tulips1 [45]. As much similarity as
possible was maintained in terms of vocabulary, subjects and recording conditions.
Additionally, recording our own database allowed us to include native speakers with
different speaking habits and background, introducing more variability in the data-
base.

Twenty subjects (ten male and ten female) spoke the English digits zero to nine.
The lower half of the subject’s face was recorded, in a frontal position. Since lip
segmentation was not the main focus of this research, blue colour was applied to the
lips of the speaker. The blue colour aids in easy extraction of the lip contour and has
also been used earlier as a marker for lip detection [36, 56]. Extracted features are
not affected by this.
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Fig. 3 Images of subjects from recorded database

To take speaker variability into consideration, two recording sessions were con-
ducted. Three utterances of each digit per speaker were recorded in the first session
and two utterances in the second session, after a gap of three months. Thus, five
samples for each digit were obtained for every subject, resulting in a total of 1000
speech samples. The video sequence was frame grabbed at 30 frames per second.
Some images from our database are shown in Fig. 3. The size of each image was
640 × 480.

From each input image, the set of boundary descriptors B are extracted. mRMR is
applied on the complete set of visual features B and top 30 features are determined.
Feature subsets are formed with the ranked features, as explained in Sect. 3.

While Hidden Markov Models [54] are commonly used for the task of speech
recognition, we have explored the use of other popular classifiers. We have clas-
sified our feature subsets using the Random Forest (RF) and k-Nearest Neighbour
(kNN) classifiers in WEKA [28]. Random Forest [8] has been used in other pattern
recognition problems with excellent results [16, 47, 59, 68]. k-Nearest Neighbor [1]
has also been used earlier in many classification tasks [12, 48, 57]. The 10-fold
cross-validation method [37] is used.

The set of boundary descriptors B and features subsets are classified and perfor-
mance of feature subsets is compared with that of base vector B using the evaluation
metrics as explained in Sect. 3.5. Based on these comparisons, a sub-optimal feature
subset is selected. Features contained in this set are analyzed for possible correlation
between them and other features contained in B.
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5 Results and Analysis

On application of mRMR on feature set B, top thirty features are obtained. Feature
subsets, B1 to B30, formed with these ranked features are classified. Classification of
B gives F-measure values of 0.492 (with RF) and 0.582 (with kNN) [60]. The values
of the evaluation metrics of the feature subsets are shown in Fig. 4. Considering the
results and feature length size, it is seen that feature vector B14 shows improved
performance with an F-measure value of 0.501 with RF classifier and 0.613 with
kNN. This is better than the F-measure values of B. The same trend is seen for
Precision and ROC Area values also. Moreover, while B contains 240 features, B14

contains only fourteen features. Thus, B14 is considerably smaller in size as compared
to B and also performs better than it. As discussed previously, a reduced feature set
will enhance the efficiency of a visual speech recognition system, performing in a
real-time scenario.

Comparing the performance of B14 with existing literature is not possible since
the experiments have been performed on different databases, using different features
and evaluation metrics. However, for the sake of completion, we take a look at the
recognition performance of other lip-reading systems. Matthews et al. [42] have
reported an accuracy of 26.9 % with feature length of 20 derived from an Active
Shape Model. They also report an accuracy of 41.9 % with 37 features from an Active
Appearance Model. Jun and Hua [33] have observed a recognition rate of 65.9 % using
90 coefficients obtained after application of DCT and LDA on their feature set. Arsic
and Thiran [3] obtain an accuracy of 89.6 % using 35 most informative eigenvectors
on a database of four digits only. Faruquie et al. [17] use twelve geoemtric features
and eight weights of eigenvectors to obtain 31.91 % for phonetic classification.

An observation of the results obtained in literature shows that recognition results
obtained using features from top-down and bottom-up approaches may vary from
a low value around 20 % (in case of a large database) to about 85 % (in case of
a single-speaker). Also, features consisting of transformed pixel intensities usually

Fig. 4 Evaluation metrics of
feature subsets. Results are
for RF classifier
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Fig. 5 Features contained in set B14

deliver better results as they contain additional information contained in the speech
articulators in the region around the mouth. Taking into account the reported results
on different datasets and features, our near-optimal vector, B14 exhibits comparable
performance by obtaining an F-measure value of 0.501 (using RF classifier) and
0.613 (using kNN). Moreover, it contains only fourteen boundary descriptors. A
small feature set is always desirable in real-time applications. This leads to reduced
computation and minimizes data handling without compromising on the recognition
accuracy.

The features contained in B14 are shown in Fig. 5. It is observed that most of
the features contained in B14 are y co-ordinates. According to image processing co-
ordinate system, x co-ordinates will give changes in lip height while y co-ordinates
will show changes in lip width. It can be inferred that most of the features contained
in B14 are depicting changes in lip width. Thus, what is known intuitively, that human
cognitive intelligence considers the changes in lip width while lip-reading, is shown
here through analysis of features. It is also seen that the two lip corners, y1 and x80

are in the list of prominent features for visual speech recognition.

5.1 Significance of Center and Corner
Lip Contour Segments

Considering the features contained in B14, we analyze the eatures contained in the
center and corner areas of B14. These are denoted by BCE and BCO respectively. The
features contained in these are:

BCE = 〈y57 y23 y60 y27 y24 y42 x60 y25〉 (12)

BCO = 〈y113 x80 y1〉 (13)

These feature sets are classified and their results are shown in Table 1. It can be
seen from the results that the feature set containing the corner lip segment performs
almost similar to the feature set containing center segment features, even though
BCO contains less number of features as compared to BCE . The reason for this is that
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Table 1 Performance of feature vectors BCE and BCO

Feature RF kNN

vector P F A P F A

BCE 0.445 0.440 0.753 0.231 0.231 0.572

BCO 0.413 0.410 0.743 0.243 0.243 0.564

B14 0.501 0.501 0.815 0.612 0.613 0.774

Also shown are the results for vector B14

when lip width changes, maximum movement is seen in the corner segment while
the center points do not move much. This reiterates the fact that lip corners and lip
width are important visual features. However, individually, these vectors are not able
to match the performance of the sub-optimal set, B14.

5.2 Contribution of Upper and Lower Lips

As can be seen in Fig. 5, most of the features in B14 belong to the upper lip. This
could be due to high correlation between upper and lower lips because of which the
lower lip features were removed during the features selection process by mRMR to
avoid redundancy.

To analyze this, we consider a set B30−upper which deletes all features lying on
the upper lip (Bupper ) from the feature set B30. Similarly, Blower contains boundary
descriptors of the lower lip. Features contained in them are:

B30−upper = 〈y1 x80 y93 y96 y97 y98 y103 y113 x116〉 (14)

Bupper = 〈x1 y1 x2 y2, . . . , x80 y80〉 (15)

Blower = 〈x81 y81 x82 y82, . . . , x120 y120〉 (16)

If high redundancy exists between upper and lower lip features, the feature vector
B30−upper should perform almost similar to B14. The classification results of these
features sets are shown in Table 2. It is noted that while the performance of B30−upper

degrades slightly as compared to B14, the difference is not very significant. Thus, it
can be argued that there is high correlation between upper and lower lips. The same
inference can be achieved if individual results of Bupper and Blower are seen. They
are almost similar. The upper lip performs slightly better than lower lip and is able
to imitate the complete lip contour (B) quite closely.
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Table 2 Performance of complete feature set (B), sub-optimal vector (B14), modified feature set
(B30 − Bupper ), upper lip (Bupper ) and lower lip (Blower )

Feature RF kNN

vector P F A P F A

B 0.499 0.492 0.800 0.583 0.582 0.768

B14 0.501 0.501 0.815 0.612 0.613 0.774

B30−upper 0.470 0.465 0.775 0.351 0.351 0.639

Bupper 0.491 0.484 0.792 0.557 0.557 0.754

Blower 0.486 0.480 0.789 0.566 0.566 0.758

6 Conclusions

This chapter presents a set of boundary descriptors representing the lip shape for
visual speech recognition. Feature selection technique, Minimum Redundancy Maxi-
mum Relevance, is applied to select and rank the boundary descriptors. A sub-optimal
feature set, containing only fourteen features is determined by computing the Opti-
mality Factor. It is seen that while this sub-optimal feature set has a reduced number
of attributes, there is no compromise on the word classification accuracy. The features
contained in the sub-optimal feature set are also analyzed. From our experiments,
we infer the following results:

• Lip width is a major visual speech cue. Most of the features contained in the
sub-optimal set are representative of the lip width.

• Features contained in the corner lip segment show more movement during speech
as compared to features in the center lip segment.

• It is also observed that there is high correlation between the upper and lower lips.

In their future research, the authors would extend the experiments to visual recog-
nition of continuous speech.
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Application of Texture Features
for Classification of Primary Benign
and Primary Malignant Focal Liver Lesions

Nimisha Manth, Jitendra Virmani, Vinod Kumar, Naveen Kalra
and Niranjan Khandelwal

Abstract The present work focuses on the aspect of textural variations exhibited by
primary benign and primarymalignant focal liver lesions. For capturing these textural
variations of benign and malignant liver lesions, texture features are computed using
statistical methods, signal processing basedmethods and transform domainmethods.
As an application of texture description in medical domain, an efficient CAD system
for primary benign i.e., hemangioma (HEM) and primary malignant i.e., hepatocel-
lular carcinoma (HCC) liver lesions based on texture features derived from B-Mode
liver ultrasound images of Focal liver lesions has been proposed in the present study.
The texture features have been computed from the inside regions of interest (IROIs)
i.e., from the regions inside the lesion and one surrounding region of interest (SROI)
for each lesion. Texture descriptors are computed from IROIs and SROIs using six
feature extraction methods namely, FOS, GLCM, GLRLM, FPS, Gabor and Laws’
features. Three texture feature vectors (TFVs) i.e., TFV1 consists of texture features
computed from IROIs, TFV2 consists of texture ratio features (i.e., texture feature
value computed from IROI divided by texture feature value computed from corre-
sponding SROI) and TFV3 computed by combining TFV1 and TFV2 (IROIs texture
features + texture ratio features) are subjected to classification by SVM and SSVM
classifiers. It is observed that the performance of SSVM based CAD system is better
than SVM based CAD system with respect to (a) overall classification accuracy (b)
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individual class accuracy for atypical HEM class and (c) computational efficiency.
The promising results obtained from the proposed SSVM based CAD system design
indicates its usefulness to assist radiologists for differential diagnosis between pri-
mary benign and primary malignant liver lesions.

Keywords Texture features · Computer aided diagnostic system · Liver ultrasound
images · Focal liver lesions · Primary benign lesion · Primary malignant lesion ·
Support vector machine classifier · Smooth support vector machine classifier

1 Introduction

The Texture descriptors have been used for efficient description of diagnostic infor-
mation present in medical images. Accordingly, texture feature extraction is the first
step towards designing a computer aided diagnostic system. The main idea behind
feature extraction is to compute the mathematical descriptors describing the prop-
erties of a region, i.e. region of interest or ROI. These features can be extracted
using different methods including statistical, signal processing based and transform
domain methods. The different methods of feature extraction are depicted in Fig. 1.

Fig. 1 Different texture feature extraction methods
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1.1 Statistical Texture Features

The statistical texture features are based on spatial distribution of the gray level
intensity values in image. The statistical feature extraction methods can be catego-
rized as first order statistics (FOS), second order statistics (GLCM), and higher order
statistics (GLRLM) based methods.

1.2 Spectral Texture Features

The spectral texture features can be computed by FPS method and GWT method as
described below:
(a) FPS Features: For each ROI, two features i.e., angular sum and radial sum of the
discrete Fourier transform (i.e., DFT) can be computed using FPS method.
(b) GWT Features: Gabor filter provides useful texture descriptors by using multi-
scale features estimated at different scales and orientations. The 2D-GWT, consid-
ering N scales and M orientations, result in a group of (N × M = X) wavelets. When
this group of Gabor filters family of Xwavelets is convolved with a given ROI image,
a set of X feature images are obtained. From these X feature images statistical fea-
tures such as, mean and standard deviation are computed and are used as texture
descriptors.

1.3 Spatial Filtering Based Texture Features

The Laws’ texture features are spatial filtering based texture descriptors which are
used to determine the texture properties of a ROI, by performing local averaging (L),
edge detection (E), spot detection (S), wave detection (W), and ripple detection (R)
in texture.

2 Application of Texture Features: CAD System
for Differential Diagnosis Between FLLs

2.1 Background

Even though biopsy is considered as the golden standard for liver disease diagnosis,
ultrasonography is commonly preferred for screening, because of its nonradioactive,
inexpensive and non-invasive nature [1–5]. The sensitivity of contrast enhanced spiral
computed tomography (CT), contrast enhanced Ultrasound (US), andmagnetic reso-
nance imaging (MRI) modalities for the detection and characterization of focal liver
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lesions (FLLs) is much higher than the conventional gray scale US. However, these
imaging modalities are not generally available, costly, and produce greater opera-
tional inconvenience [1, 6–10]. Thus, a computer aided diagnostic system (CAD) for
precise characterization of primary benign and primary malignant FLLs, based on
conventional gray scale B-mode liver US is extremely desired to assist radiologists
during routine clinical practice.

The aim of the present work is to highlight the application of texture descriptors
for description of diagnostic information in the form of texture for differential diag-
nosis between primary and secondary malignant FLLs using B-Mode US images.
According, a CAD system design for differential diagnosis between hemangioma
(HEM i.e., primary benign FLL) and hepatocellular carcinoma (HCC i.e., primary
malignant FLL) based on texture features derived from the B-mode liver US images
of FLLs is proposed in the present study. The motivation behind considering these
image classes is that the incidence of these lesions is very high in comparison to
other primary benign and primary malignant lesions. Among the primary malignant
lesions, hepatoblastoma (7%), cholangiocarcinoma and cystadenocarcinoma (6%)
occur rarely therefore, the most commonly occurring primary malignant lesion i.e.,
HCC is considered [11–13]. Among all the primary benign lesions of liver, HEM is
the most commonly occurring primary benign FLL [8, 14].

Almost 70% of the total HEM cases encountered in day to day practice are typical
HEMs, which appears as well circumscribed uniformly hyperechoic lesion [1, 7–9,
14–16]. On the other hand, atypical HEMs may be hypoechoic or even isoechoic,
mimicking the sonographic appearances of HCC lesions [1, 8, 10]. The experienced
participating radiologists were of the view that HCC lesions cannot be divided into
typical and atypical sub-classes because there is no typical appearance for HCC.
However, the participating radiologists opined that images in HCC class should
include both small hepatocellular carcinomas (i.e., SHCCs, <2 cm in size) and large
hepatocellular carcinomas (i.e., LHCCs,>2 cm in size). The differentiation between
typical HEM and HCC is easy due to the typical sonographic appearance of the
former one, but differential diagnosis between atypical HEM and HCC lesions is
difficult even for the experienced radiologists [8].

In 85% of cases, HCC develops in patient with cirrhosis [1, 6–9, 14, 15, 17–
19]. In radiology, cirrhosis condition is considered as a precursor for the occurrence
of HCC [1, 6–8]. Also, this feature favours the differential diagnosis of HCC with
atypicalHEMs.The sonographic appearances ofSHCC lesions vary fromhypoechoic
to hyperechoic, whereas LHCC generally appears with mixed echogenecity [7, 8].
In order to design an efficient classifier, it should be ensured that the database for
designing the classifier should be diversified and comprehensive i.e., it should include
both typical and atypical HEMs as well as SHCC and LHCC cases. Accordingly,
the dataset used in the present work includes 10 typical and 6 atypical HEM images
and 13 SHCCs and 15 LHCCs images. The sample images for HEM (typical and
atypical) and HCC (SHCC and LHCC) lesions are as shown in Fig. 2.

The differential diagnosis between HEM and HCC lesions with the help of con-
ventional gray scale B-mode US is considered difficult because of various limita-
tions including: (a) limited sensitivity for the detection of SHCCs developed on the
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Fig. 2 Conventional gray scale B-mode liver US images. a typical HEM with homogeneously
hyperechoic appearance; b, c atypical HEM with mixed echogenecity; d small HCC with mixed
echogenecity; e small HCC with hypoechoic appearance; f large HCC with mixed echogenecity

cirrhotic liver which is generally coarse-textured and nodular [1, 7–9, 20], (b) in
most of the cases, the sonographic appearances of HCC and atypical HEMs are over-
lapping [1, 8, 9, 20, 21], (c) in certain cases, it is difficult to differentiate isoechoic
lesions with very slim liver to lesion contrast [8, 17]. So, it is very important to
overcome these limitations by design of an efficient CAD systemwith representative
and diversified image database containing typical and atypical cases of HEM image
class and SHCC and LHCC variants of the HCC image class.

In literature, there are only few related studies on classification of FLLs. The
brief description of these studies is given in Table1. The study in [22] used regions of
interest (ROIs) of size 10× 10 for computing gray-level run length matrix (GLRLM)
andfirst order statistics (FOS) features to classify normal (NOR),HEMandmalignant
liver lesions by using neural network (NN) and linear discriminant analysis (LDA)
classifier.

The study in [23] computed texture features based on autocorrelation, gray level
co-occurrence matrix (GLCM), edge frequency and Laws’ mask analysis from ROI
of size 10× 10 for the classification of NOR, Cyst, HEM and malignant liver lesions
by using neural network classifier. The research work carried out in study [18] used
ROI of size 32× 32 for computingGLCM,GLRLM, FPS, and Laws’ texture features
to classify HCC and metastatic carcinoma (MET) lesions by using support vector
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machine (SVM) classifier. In studies [13, 15], five class classification between NOR,
Cyst, HEM, HCC and MET classes has been carried out considering the ROI size
of 32 × 32 pixels using KNN, PNN, BPNN and SVM classifiers. The study in [3]
reports five class classification between NOR, Cyst, HEM, HCC and MET classes
considering two stage classification approach using 11 neural network classifiers. In
first stage a single five class NN was used for prediction of probability of each class
and in the second stage 10 binary NN classifiers were used. Based on the first two
highest probabilities predictions of the first stage five class NN, the testing instance
was passed to the corresponding binary NN of the second stage. The research work
reported in [3, 13, 15] computed the texture features based onFOS,GLCM,GLRLM,
FPS, Gabor Wavelet Transform (GWT) and Laws’ features. However, the study in
[16] reports the binary classification of HCC and HEM, HCC and MET, and MET
and HEM lesions by computing the single-scale and multi-scale texture features of
64 × 64 sized ROIs by using NN classifiers.

It is highlighted in other studies that minimum 800 pixels are required to compute
reliable estimates of statistical features [24–26]. However, the researchwork reported
in [22, 23] has been carried out on ROI of size 10 × 10 which yields smaller number
of pixels. The studies [3, 13, 15, 18] used an ROI size of 32 × 32 and Yoshida et al.
[16] used the ROI size of 64 × 64. Since, necrotic areas within the lesions should be
avoided for cropping of inside ROIs (i.e., IROIs) and inhomogeneous areas include
blood vessel etc. should be avoided for cropping of surrounding ROIs (i.e., SROIs),
so in the present work, considering ROI size larger than 32 × 32 was not feasible. In
studies [16, 22, 23] texture features of IROIs were only considered and the dataset
description as to how many typical and atypical HEMs and how many SHCC and
LHCC were taken into consideration is not described.

As HCC develops on cirrhotic and nodular background, therefore, the experi-
enced radiologists carry out differential diagnosis between atypical HEM and HCC
by visual analysis of texture information of regions inside and outside the lesions.
Therefore, in the present work, an investigation of contribution made by texture
information present in the regions inside and outside of the lesion has been carried
out for characterization of HEM and HCC lesions. For the classification task, sup-
port vector machine (SVM) classifier and smooth support vector machine (SSVM)
classifier have been used [20, 27, 28].

2.2 Data Collection

For the present work, 44 B-mode liver US images consisting of 16 HEM and 28 HCC
liver images were collected over a time period fromMarch 2010 toMarch 2014 from
the patients visiting the Department of Radiodiagnosis and Imaging, Post Graduate
Institute of Medical Education and Research (PGIMER), Chandigarh, India. The
consent of the patients was taken prior to recording, the medical ethics board of
PGIMER granted the ethical clearance to carry out this research work. The Philips
ATL HDI 5000 US machine equipped with the multi-frequency transducer of 2–5
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MHz range was used to record the direct digital images. The size of the images is
800 × 564 pixels with gray scale consisting of 256 tones, and horizontal as well as
vertical resolution is 96 dpi.

2.3 Dataset Description

In the presentwork, clinically acquired image database of 44B-mode liverUS images
consisting of 16 HEM images with 16 solitary HEM lesions (i.e., 10 typical HEM
lesions and 6 atypicalHEM lesions) and 28HCC imageswith 28 solitaryHCC lesions
(i.e., 13 SHCCs lesions and 15 LHCCs lesions) have been used. The description of
the image database is given in Table2. The final database comprising of total 160
IROIs and 44 SROIs was stored in Intel® CoreTM I3-M 370, 2.40 GHz with 3 GB
RAM.

In order to design an efficient classifier, it should be ensured that the training
data includes representative cases from both the image sub-classes i.e., typical and
atypical HEMs and SHCC as well as LHCC cases. Each image class was divided
into two sets of images (training and testing set). To avoid biasing, the training ROIs
were taken from the first set while testing ROIs were taken from the other set.

The brief description of training and testing dataset is given in Table3.

2.4 Data Collection Protocol

The following protocols were adopted for the data collection:
(a) The judgment regarding the representativeness and diagnostic quality of each

image was made by two participating radiologists with 15 and 25 years of experi-
ence in US imaging. (b) The ground truth of HEM and HCC lesions was confirmed
using liver image assessment criteria including: (i) visualization of sonographic

Table 2 Description: image database

Clinically acquired B-mode liver US images (44)

Total IROIs: 160, Total SROIs: 44

HEM HCC

Total images 16 28

Typical HEM: 10 SHCC: 13

Atypical HEM: 6 LHCC: 15

Total lesions 16 28

Total IROIs 70 90

Typical HEM IROIs: 27 SHCC IROIs: 19

Atypical HEM IROIs: 43 LHCC IROIs: 71

Total SROIs 16 28

Note SHCC Small Hepatocellular Carcinoma (size varies from 1.5 to 1.9 cm); LHCC Large Hepa-
tocellular Carcinoma (size varies from 2.1 to 5.6 cm). IROIs Inside ROIs, SROIs Surrounding ROIs
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Table 3 Description: training and testing dataset

HEM HCC

Description: training dataset

Total images (26) 10 16

Total lesions 10 16

Typical HEM lesions: 7 SHCC lesions: 7

Atypical HEM lesions: 3 LHCC lesions: 9

Total IROIs (90) 40 50

Typical HEM IROIs: 22 SHCC IROIs: 10

Atypical HEM IROIs: 18 LHCC IROIs: 40

Total SROIs (26) 10 16

Description: testing dataset

Total images (18) 6 12

Total lesions 6 12

Typical HEM lesions: 3 SHCC lesions: 7

Atypical HEM lesions: 3 LHCC lesions: 9

Total IROIs (90) 40 50

Typical HEM IROIs: 22 SHCC IROIs: 10

Atypical HEM IROIs: 18 LHCC IROIs: 40

Total SROIs (26) 10 16

appearances, imaging features of HEM andHCC based on their expertise and knowl-
edge, (ii) follow up of clinical history of the patient and other associated findings,
and (iii) imaging appearance on dynamic helical MRI/CT/biopsy and pathological
examinations, which is an invasive procedure. (c) The difference between SHCC and
LHCC was made by observing the size of the lesion in longitudinal and transverse
views. The HCC lesions which are less than 2cm in size are considered as SHCCs.

The labeling of HEM lesions as typical and atypical and HCC lesions as SHCC
or LHCC lesion was done during data collection solely for the purpose of having
representative data in the training set for designing the classifier.

2.5 Selection of Regions of Interest (ROIs)

In the present study, two types of ROIs i.e., inside regions of interest (IROIs) and
surrounding regions of interest (SROIs) are used. The sample images for typical
HEM, atypical HEM, SHCC and LHCC cases with ROIs marked are shown in Fig. 3.
The cropping of ROIs from image dataset has been done according to the following
protocols:
(a) For cropping of IROIs, maximum non-overlapping IROIs were cropped from the
region well within the boundary of each lesion by avoiding the necrotic areas, if any.
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Fig. 3 Sample images with ROIs marked. a typical HEM; b atypical HEM; c SHCC; d LHCC;
Note SROI: Surrounding lesion ROI; IROI: Inside Lesion ROI; HEM: Hemangioma; SHCC: Small
hepatocellular carcinoma; LHCC: Large hepatocellular carcinoma

(b) For every lesion, one SROI was cropped from the surrounding liver parenchyma
approximately from the same depth as that of the center of the lesion by avoiding
the inhomogeneous structures such as blood vessels and liver ducts, etc.

2.6 Selection of ROI Size

The selection of ROI size is done carefully, considering the fact that it should provide
adequate number of pixels for computing the texture properties. The different sized
ROIs have been selected in the literature for the classification of FLLs such as,
10 × 10 pixels [22, 23], 32 × 32 pixels [3, 13, 15, 18], and 64 × 64 pixels [16]. In
the present study, multiple ROIs of size 32 × 32 pixels are manually extracted from
each lesion considering the facts given below:
(a) It has been shown in earlier studies that ROI size with 800 pixels or more provide
good sampling distribution for estimating reliable statistics. The ROI size of 32× 32
contains 1024 pixels and therefore, the texture features computed can be considered
to be reliable estimates.
(b)The participating radiologists suggested avoiding larger sizedROIs because some
lesions contain necrotic areas. Therefore, radiologists opined that necrotic area inside
the lesions should be avoided during IROIs extraction. Further, the participating
radiologists were of the view that SROI for every lesion should be chosen by avoiding
inhomogeneous areas such as bloodvessels andhepatic ducts etc.,which is practically
not possible by considering larger sized ROIs.
(c) The ROIs, which are smaller in size, takes less time for feature computation in
comparison to the larger sized ROIs. Also, more number of samples are available by
considering smaller sized ROIs.
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2.7 Proposed CAD System Design

In the present work, the CAD system for characterization of HEM and HCC lesions
using B-Mode US images has been proposed. The block diagram of the proposed
CAD system design is shown in Fig. 4.

For implementing proposed CAD system design, the dataset of 160 non-overl-
apping IROIs and 44 SROIs was extracted from 44 clinically acquired B-mode
liver US liver images. The CAD system includes feature extraction and classifi-
cation modules. In feature extraction module, texture features are computed from
160 IROIs and 44 SROIs using First Order Statistics (FOS), second order statistics
which includes GLCM (Gray-Level Co-occurrence Matrix) method, higher order
statistics i.e., GLRLM (Gray-Level Run Length Matrix) method, spectral features

Fig. 4 Block diagram of proposed CAD system design. Note l: Length of feature set
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such as FPS (Fourier power spectrum) and GWT (Gabor Wavelet Transform) fea-
tures and spatial filtering based Laws’ texture features. The texture feature set of 172
texture features containing 86 texture IROI features and 86 texture ratio features is
considered for analysis. The feature set is further divided into training dataset and
testing dataset.

The bifurcation of ROIs of particular class in training and testing dataset is
described in Table3.

In classification module, two different classifiers, i.e., SVM and SSVM have been
used for the classification task.

2.7.1 Feature Extraction Module

The main idea behind feature extraction is to compute the mathematical descrip-
tors describing the properties of ROI. These mathematical descriptors are further
classified as shape based features and texture based features [29, 30].

The participating radiologists opined that the shape based features do not provide
any significant information for differential diagnosis betweenHEMandHCC lesions.
Accordingly, the proposed CAD system design is based on the textural features only.

The texture feature extraction methods are generally classified into statistical,
spectral and spatial filtering basedmethods. From the exhaustive review of the related
studies on classification of FLLs [3, 13, 15, 18, 22, 23], it can be observed that all
these texture features are important for the classification of FLLs.

Accordingly, for the present task of classification betweenHEMandHCC lesions,
the texture features are extracted for each ROI image using statistical, spectral and
spatial filtering based methods as shown in Fig. 5.

In the present work, a total of 172 texture features (shown in Table4) were com-
puted by using statistical, spectral and spatial filtering based texture feature extraction

Fig. 5 Texture features computed for each ROI image
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Table 4 Description of 172 texture features extracted for characterization ofHEMandHCC lesions

Methods Features description

Statistical FOS (F1–F6) GLCM
(F7–F19)

GLRLM (F20–F30)

F1: average gray level F7: angular
second moment

F20: short run emphasis

F2: standard deviation F8: contrast F21: long run emphasis

F3: smoothness F9: correlation F22: low gray level run
emphasis

F4: third moment F10: sum of
squares variance

F23: high gray level run
emphasis

F5: uniformity F11: inverse
difference
moment

F24: short run low gray
level emphasis

F6: entropy F12: sum
average

F25: short run high gray
level emphasis

F13: sum
variance

F26: long run low gray level
emphasis

F14: sum
entropy

F27: long run high gray
level emphasis

F15: entropy F28: gray level non
uniformity

F16: difference
variance

F29: run length non
uniformity

F17: difference
entropy

F30: run percentage

F18: information
measures of
correlation- 1

F19: information
measures of
correlation- 2

Spectral FPS (F31–F32) GWT (F33–F74)

F31: angular sum *F33–F53: mean

F32: radial sum *F54–F74:
standard
deviation

Spatial filtering Laws’ (F75–F86)

F75: LLmean F79: LSmean F83: SSstd

F76: EEmean F80: ESmean F84: LEstd

F77: SSmean F81: LLstd F85: LSstd

F78: LEmean F82: EEstd F86:ESstd

Note F87–F172: 86 texture ratio features corresponding to above features (F1–F86). Features F1to
F86 are computed for each IROI and SROI so as to compute another 86 texture ratio features (F87–
F172) corresponding to the above features. *(F33–F74) two statistical parameters computed out of
21 feature images obtained as a result of convolving 21 Gabor filters with each ROI image. These
21 wavelet filters were computed by considering 3 scales (0, 1, 2) and 7 orientations (22.5◦, 45◦,
67.5◦, 90◦, 112.5◦, 135◦, 157.5◦)
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methods. Further, these features are applied to the CAD system with a tedious task
of joining all the effective features together. The brief description of these texture
features is depicted below.

Statistical Texture Features (F1–F30)

The statistical texture features are based on spatial distribution of the gray level
intensity values in an image. The statistical feature extraction methods can be cat-
egorized as first order statistics (FOS), second order statistics (GLCM), and higher
order statistics (GLRLM) based methods.
(a) FOS features (F1–F6): For each ROI, six textural features are computed with
FOS method i.e., average gray level, smoothness, standard deviation, entropy, third
moment and uniformity [2, 13, 15].
(b) GLCM features (F7–F19): For each ROI, thirteen textural features are com-
puted with GLCM method i.e., contrast, angular second moment, inverse differ-
ence moment, correlation, sum average, variance, sum variance, difference variance,
entropy, sum entropy, difference entropy, information measure of correlation-1 and
information measure of correlation-2 [4, 13, 15, 31] .
(c)GLRLMfeatures (F20–F30): For eachROI, eleven textural features are-computed
with GLRLMmethod i.e., long run emphasis (LRE), short run emphasis (SRE), high
gray level run emphasis (HGLRE), low gray level run emphasis (LGLRE), short run
high gray level emphasis (SRHGLE), short run low gray level emphasis (SRLGLE),
long run high gray level emphasis (LRHGLE), long run low gray level emphasis
(LRLGLE), gray level non-uniformity (GLN), run length non-uniformity (RLN)
and run percentage (RP) [13, 15, 32–35].

Spectral Texture Features (F31–F74)

The spectral texture features can be computed by FPS method and GWT method as
described below:
(a) FPS features (F31–F32): For each ROI, two features i.e., angular sum and radial
sum of the discrete Fourier transform (i.e., DFT) has been computed using FPS
method [13, 15, 32].
(b) GWT features (F33–F74): Gabor filter provides useful texture descriptors by
using multi-scale features estimated at different scales and orientations. The 2D-
GWT, considering three scales (0, 1, 2) and seven orientations (22.5◦, 45◦, 67.5◦,
90◦, 112.5◦, 135◦, 157.5◦), result in a group of (7× 3 = 21)wavelets.When this group
of Gabor filters family of 21 wavelets is convolved with a given ROI image, a set of
21 feature images are obtained. The real parts of Gabor filter family of twenty one
feature images obtained for a sample HEMROI image is shown in Fig. 6. From these
21 feature images, mean and standard deviation are computed as texture descriptors
resulting in (21 feature images× 2 statistical parameters = 42) features for each ROI
[5, 30, 36].
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Fig. 6 The real part of Gabor filter family of 21 wavelets (feature images) obtained for a sample
HEM IROI image with scales (0, 1, 2) from top to bottom and orientations (22.7◦, 45◦, 67.5◦, 90◦,
112.5◦, 135◦, 157.5◦) from left to right

Spatial Filtering Based Texture Features (F75–F86)

The Laws’ texture features are spatial filtering based texture descriptors which are
used to determine the texture properties of a ROI, by performing local averaging (L),
edge detection (E), spot detection (S), wave detection (W), and ripple detection (R)
in texture [13, 15, 30, 37, 38]. Laws’ texture features can be computed by using
special 1-D filters of length 3, 5, 7, and 9 as shown in Table5. Different filter lengths
correspond to different resolutions for extraction of texture features from a ROI.

In the present work, 1-D filters of length 3, i.e., L3 = [1, 2, 1], E3 = [–1, 0, 1],
and S3 = [–1, 2, –1], have been considered for analysis. A total of nine 2-D filters
are generated by combining these 1-D filters as shown in Fig. 7.

The texture images (TIs) are obtained by convolving the ROI of size M × N with
these 2D Laws’ masks, for example

TIE3E3 = ROI ⊗ E3E3 (1)

The output texture images are processed by texture energy measurement (TEM)
filters. The TEM filter performs moving average nonlinear filtering as depicted by:

TEI = TEM[TI(x, y)]

=
7∑

i=−7

7∑

j=−7

|I(x+i, y+j) (2)

Here, 15 × 15 descriptor windows are used to obtain nine texture energy images
(TEIs). TEIs obtained by a pair of identical filters, for example, and are combined to
obtain a rotational invariant image (90◦ rotational invariance) (TR).

TRE3L3 = TEIE3L3 + TEIL3E3
2

(3)
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Table 5 Description of Laws’ masks of different lengths

Length of 1-
D filter

1-D filter coefficients No. of 2D
Laws’ masks

TRs obtained
from identical
filter pairs

Total TRs

3 L3 = [1, 2, 1] 9 3 6

E3 = [–1, 0, 1]

S3 = [1–, 2, –1]

5 L5 = [1, 4, 6, 4, 1] 25 10 15

E5 = [–1, –2, 0, 2, 1]

S5 = [–1, 0, 2, 0, –1]

W5 = [–1, 2, 0, –2 1]

R5 = [1, –4, 6, –4, 1]

7 L7 = [1, 6, 15, 20, 15, 6, 1] 9 3 6

E7 = [–1 –4, –5, 0, 5, 4, 1]

S7 = [–1, –2, 1, 4, 1, –2, –1]

9 L9 = [1, 8, 28, 56, 70, 56, 28, 8, 1] 25 10 15

E9 = [1, 4, 4, –4, –10, –4, 4, 4, 1]

S9 = [1, 0, –4, 0, 6, 0, –4, 0, 1]

W9 = [1, –4, 4, –4, –10, 4, 4, –4, 1]

R9 = [1, –8, 28, –56, 70, –56, 28,
–8, 1]

Note TRs rotational invariant texture images

Fig. 7 Nine 2-D Laws’
masks

Statistics derived from these TR images provide significant texture information
of ROI. Two statistics i.e., mean, and standard deviation is extracted from each TR
image. Thus, twelve Laws’ texture features (6 TR images × 2 statistical parameters)
are computed for each ROI.

The classification of HEM and HCC lesions was initially attempted by Laws’
masks of all the lengths i.e., 3, 5, 7, and 9. It was observed that the features derived
by Laws’ mask of length 3 resulted in better discrimination between HEM and
HCC lesions. Therefore, in the present work, Laws’ masks of length 3 have been
considered.

For the detection and characterization ofHEMandHCC initially, 3 TFVs are com-
puted using FOS, GLCM, GLRLM, FPS, GWT and Laws’ texture feature extraction
methods. The description of these TFVs is given in Table6.
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Table 6 Description of TFVs

TFVs Description l

TFV1 TFV consisting of 86 texture features (6 FOS, 13 GLCM, 11 GLRLM, 2
FPS, 42 Gabor, 12 Laws’ features)

86

TFV2 TFV consisting of 86 texture ratio features (6 FOS, 13 GLCM, 11 GLRLM,
2 FPS, 42 Gabor, 12 Laws’ features)

86

TFV3 Combined TFV consisting of 86 texture features (TFV1) and 86 texture
ratio features (TFV2)

172

Note TFVs Texture Feature Vectors, l Length of TFVs

2.7.2 Classification Module

The task of a classifier is to assign a given sample to its concerned class. In the
present work, SVM and SSVM classifiers have been used for the classification task.
To avoid any bias induced by unbalanced feature values the extracted features are
normalized between 0 and 1, by using min-max normalization procedure.

Support Vector Machine (SVM) Classifier

The SVM classifier belongs to a class of supervised machine learning algorithms.
This classifier is based on the notion of decision planes which define the decision
boundary. The kernel functions are used in nonlinear mapping of training data from
the input space to higher dimensional feature space. The polynomial, Gaussian radial
basis function and sigmoid kernel are used in general [27, 28, 38–41].

In the presentwork, LibSVMlibrary has been used for the implementation of SVM
classifier [42] and the performance of the Gaussian radial basis kernel function has
been examined. The optimal choice of kernel parameter and regularization parameter
C is the crucial step in attaining good generalization performance. The regularization
parameter C keeps low training error value and tries to maximize the margin while
the kernel parameter decides the curvature of decision boundary. In present work,
10-fold cross validation is carried out on training data for each combination of (C, γ ),
such that C ε{2−4, 2−3 . . . 215}, and γ ε{2−12, 2−11 . . . 24}. The optimum values of C
and γ can be obtained by this grid search procedure in the parameter space for which
the training accuracy is maximum.

Smooth Support Vector Machine (SSVM) Classifier

To solve importantmathematical problems related to programming, smoothingmeth-
ods are extensively used. The SSVM works on the idea of smooth unconstrained
optimization reformulation based on the traditional quadratic programwhich is asso-
ciated with SVM [43, 44]. For implementing SSVM classifier, the SSVM toolbox
[45] developed by Laboratory of Data Science and Machine Intelligence, Taiwan
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has been used. Similar to SVM implementation in case of SSVM also, 10-fold cross
validation is carried out on training data for each combination of (C, γ ), such that,
C ε{2−4, 2−3 . . . 215} and γ ε{2−12, 2−11 . . . 24}. The optimum values of C and γ can
be obtained by this grid search procedure in the parameter space forwhich the training
accuracy is maximum.

2.8 Results

The flow chart for design of CAD system for classification of HEM and HCC lesions
is shown in Fig. 8.

For implementing the above CAD system design rigorous experiments were con-
ducted. A brief description of these experiments is given in Table7. The performance
of the CAD system design has been compared with respect to overall classification
accuracy (OCA), individual class accuracy (ICA), and the computational efficiency.

Fig. 8 Flow chart for design
of CAD system for
classification of HEM and
HCC lesions
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Table 7 Description of experiments carried out in the present work

Experiment
no.

Description

1. To evaluate the performance of TFV1 with SVM and SSVM classifier

2. To evaluate the performance of TFV2 with SVM and SSVM classifier

3. To evaluate the performance of TFV3 with SVM and SSVM classifier

4. To evaluate the computational efficiency of SVM and SSVM classifier with TFV3

Note TFV Texture feature vector

2.8.1 Experiment 1: To Evaluate the Performance of TFV1 with SVM
and SSVM Classifier

In this experiment, classification performance of TFV1 consisting of 86 IROI texture
features has been evaluated using SVM and SSVMclassifier. The results are reported
in Table8. It can be observed that the SVM classifier yields OCA of 52.9%with ICA
values of 90 and 75% for HEM and HCC classes, respectively. The SSVM classifier
yields OCAof 72.9%with ICA values of 46.6 and 92.5% for HEMandHCC classes,
respectively.

2.8.2 Experiment 2: To Evaluate the Performance of TFV2 with SVM
and SSVM Classifier

In this experiment, classification performance of TFV2 consisting of 86 texture ratio
features has been evaluated using SVM and SSVMclassifier. The results are reported
in Table9. It can be observed that the SVM classifier yields OCA of 77.1% with
ICA values of 50.0 and 97.5% for HEM and HCC classes, respectively. The SSVM
classifier yields OCA of 91.4%with ICA values of 90 and 92.5% for HEM andHCC
classes, respectively.

Table 8 Classification performance of TFV1 with SVM and SSVM classifier

TFV (l) Classifier
used

CM OCA (%) ICAHEM (%) ICAHCC (%)

HEM HCC

TFV1 (86) SVM HEM 27 3 52.9 90.0 75.0

HCC 30 10

TFV1 (86) SSVM HEM 14 16 72.9 46.6 92.5

HCC 3 37

Note TFV1 Texture feature vector 1 (consisting of 86 IROI texture features only); l Length of
TFV1;CM ConfusionMatrix;OCAOverall classification accuracy; ICA Individual ClassAccuracy;
I C AH E M ICA of HEM class; I C AHCC ICA of HCC class
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Table 9 Classification performance of TFV2 with SVM and SSVM classifier

TFV (l) Classifier
used

CM OCA (%) ICAHEM (%) ICAHCC (%)

HEM HCC

TFV2 (86) SVM HEM 15 5 77.1 50.0 97.5

HCC 1 39

TFV2 (86) SSVM HEM 27 3 91.4 90.0 92.5

HCC 3 37

Note TFV2 Texture feature vector 2 (consisting of 86 texture ratio features only); l Length of
TFV2;CM ConfusionMatrix;OCAOverall classification accuracy; ICA Individual ClassAccuracy;
I C AH E M ICA of HEM class; I C AHCC ICA of HCC class

Table 10 Classification performance with of TFV3 with SVM and SSVM classifier

TFV (l) Classifier
used

CM OCA (%) ICAHEM (%) ICAHCC (%)

HEM HCC

TFV3 (86) SVM HEM 28 2 92.9 93.3 92.5

HCC 3 37

TFV3 (86) SSVM HEM 29 1 94.3 96.6 92.5
HCC 3 37

Note TFV3 Texture feature vector 3 (consisting of 172 texture features, i.e., TFV1 and TFV2); l
Length of TFV3;CM ConfusionMatrix;OCAOverall classification accuracy; ICA Individual Class
Accuracy; I C AH E M ICA of HEM class; I C AHCC ICA of HCC class

2.8.3 Experiment 3: To Evaluate the Performance of TFV3 with SVM
and SSVM Classifier

In this experiment, the combined TFV i.e., TFV3 consisting of 172 features (86 IROI
texture features + 86 texture ratio features) has been evaluated by using SVM and
SSVM classifier. The results are reported in Table10. It can be observed that the
SVM classifier yields OCA of 92.9% with ICA values of 93.3 and 92.5% for HEM
and HCC classes, respectively. The SSVM classifier yields OCA of 94.3%with ICA
values of 96.6 and 92.5% for HEM and HCC classes, respectively.

It can be observed that the results obtained by SSVM classifier (bold) are better
in comparison with SVM classifier.

2.8.4 Experiment 4: To Evaluate the Computational Efficiency of SVM
and SSVM Classifier with TFV3

From the results of the exhaustive experiments carried out in the study, it can be
observed that TFV3 i.e., combinedTFVyields highestOCAvalue in comparisonwith
the OCA value yielded by TFV1 and TFV2. Therefore, the computational efficiency
of SVM and SSVM classifier with only TFV3 has been evaluated. Further, since the
time taken for computing TFV3 is same for both the CAD system designs i.e., SVM
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based CAD system and SSVM based CAD system, the time taken for prediction of
70 cases of testing dataset of TFV3 is considered for evaluating the computational
efficiency. It was observed that the proposed SSVM based CAD system design is
computationally more efficient than SVM based CAD system design as the time
taken for prediction was 5.1 µs for SVM classifier and 3.4 µs for SSVM classifier
using MATLAB (version 7.6.0.324 R2008a) with PC configuration Intel® CoreTM

I3-M 370, 2.40GHz with 3 GB RAM.

2.9 Discussion

Misclassification Analysis: Analysis of five misclassified cases out of 70 cases (i.e.,
5/70) for SVM based CAD system design and four misclassified cases out of 70
cases (i.e., 4/70) for SSVM based CAD system design is given in Table11.

Table 11 Misclassification analysis of 70 cases of testing dataset with SVM and SSVM classifier

SVM SSVM

Misclassification analysis of HEM cases

Total HEM cases 30 30

Typical HEM cases 5 5

Atypical HEM cases 25 25

Correctly classified cases 28 29

Misclassified cases 2 1

ICAHEM 93.3% 96.6%

HEM misclassified cases 2 out of 25 atypical HEM cases 1 out of 25 atypical HEM cases

ICATypicalHEM 100% 100%

ICAAtypicalHEM 92 % 96 %

Misclassification analysis of HCC cases

SVM SSVM

Total HCC cases 40 40

Small HCC cases 9 9

Large HCC cases 31 31

Correctly classified cases 37 37

Misclassified cases 3 3

ICAHCC 92.5% 92.5%

HCC misclassified cases 3 out of 31 LHCC cases 3 out of 31 LHCC cases

ICASHCC 100% 100%

ICALHCC 90.3% 90.3%

Note ICA IndividualClassAccuracy; I C AH E M ICAofHEMclass; I C AT ypical H E M ICAofTypical
HEMclass; I C AAtypical H E M ICAofAtypical HEMclass; I C AHCC ICAofHCC class; I C ASHCC
ICA of Small HCC class; I C AL HCC ICA of Large HCC class. It can be observed that the ICA
value of atypical HEM class (bold) has improved with SSVM classifier
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It can be observed that same ICA values of 100, 100 and 90.3%, are obtained
for typical HEM, SHCC and LHCC cases with both SVM and SSVM based CAD
system designs. However, it is worth mentioning that for atypical HEM class the
SSVM based CAD system design yields higher ICA value of 96% in comparison to
92% as yielded by SVMbased CAD system design. It can also be seen from Table10
that the proposed SSVM based CAD system design yields higher OCA of 94.3% in
comparison to 92.9% as yielded by SVM based CAD system design.

Since, US offers limited sensitivity for detection of SHCCs and also given the fact
that differential diagnosis between atypical HEM and HCC cases is considerably
difficult; therefore, the improvement in ICA values for atypical HEMs and HCC
cases is highly desirable. Further, it can be observed that all the SHCC cases have
been correctly classified by both the CAD system designs (i.e., the ICA value for
SHCC is 100%).

Overall it can be observed that the SSVM based CAD system outperforms the
SVM based CAD system with respect to the (a) OCA value, (b) ICA value for the
atypical HEM cases, and (c) computational efficiency.

The participating radiologists were of the view that the results yielded by proposed
SSVM based CAD system design are quite convincing keeping in view that the
comprehensive and diversified database (consisting of typical and atypical HEMs as
well SHCC and LHCCs cases) used in present work.

3 Conclusion

In the present work, focuses on the aspect of textural variations exhibited by pri-
mary benign and primary malignant focal liver lesions. For capturing these textural
variations of benign and malignant liver lesions texture features are computed using
statistical methods, signal processing based methods and transform domain meth-
ods. In the present work, an efficient CAD system has been proposed for differential
diagnosis between benign andmalignant focal liver lesions using texture descriptors.
The following main conclusions can be drawn:
(a) The texture of the region surrounding the lesion contributes significantly towards
the differential diagnosis of HEM and HCC lesions.
(b) The proposed SSVM based CAD system design is better in comparison to the
SVM based CAD system design in terms of the OCA value, ICA values for atypical
HEM class and computational efficiency.

The promising results yielded by proposed SSVM based CAD system design
indicate its usefulness to assist radiologists for the differential diagnosis of HEM
and HCC lesions during routine clinical practice.
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Application of Statistical Texture Features
for Breast Tissue Density Classification

Kriti, Jitendra Virmani and Shruti Thakur

Abstract It has been strongly advocated that increase in density of breast tissue is
strongly correlated with the risk of developing breast cancer. Accordingly change in
breast tissue density pattern is taken seriously by radiologists. In typical cases, the
breast tissue density patterns can be easily classified into fatty, fatty-glandular and
dense glandular classes, but the differential diagnosis between atypical breast tissue
density patterns from mammographic images is a daunting challenge even for the
experienced radiologists due to overlap of the appearances of the density patterns.
Therefore a CAD system for the classification of the different breast tissue density
patterns from mammographic images is highly desirable. Accordingly in the present
work, exhaustive experiments have been carried out to evaluate the performance of
statistical features using PCA-kNN, PCA-PNN, PCA-SVM and PCA-SSVM based
CAD system designs for two-class and three-class breast tissue density classification
using mammographic images. It is observed that for two-class breast tissue density
classification, the highest classification accuracy of 94.4% is achieved using only the
first 10 principal components (PCs) derived from statistical features with the SSVM
classifier. For three-class breast tissue density classification, the highest classification
accuracy of 86.3% is achieved using only the first 4 PCs with SVM classifier.
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1 Introduction

Cancer comes under a class of diseases that are characterized by uncontrolled growth
of cells resulting in formation of tissue masses called tumors at any location in the
body [1]. The malignant tumor can destroy other healthy tissues in the body and
often travels to other parts of the body to form new tumors. This process of invasion
and destruction of healthy tissues is called metastasis [2]. Breast cancer is the type of
cancer that develops form breast cells. It is considered to be a major health problem
nowadays and is the most common form of cancer found in women [3]. For the
women in United Kingdom, the lifetime risk of being diagnosed with breast cancer
is 1 in 8 [4]. The study in [5] reported 1.67 million new incidences of breast cancer
worldwide in the year 2012. There are various risk factors associated with cancer
development: (a) Age, (b) History of breast cancer, (c) Formation of certain lumps
in the breasts (d) Higher breast density, (e) Obesity, ( f ) Alcohol consumption, (g)

Cosmetic implants.
It has been strongly advocated by many researchers in their study that high breast

density is strongly correlated with the risk of developing breast cancer [6–14]. The
association between increased breast density and breast cancer risk can be explained
on the basis of effects due to the hormones mitogens and mutagens. The size of
the cell population in the breast and cell proliferation is affected by mitogens while
the likelihood of damage to these cells is due to mutagens. Due to increased cell
population, there is an increase in reactive oxygen species (ROS) production and
lipid peroxidation. The products of lipid peroxidation; malondialdehyde (MDA) and
isoprostanes catalyze the proliferation of cells [15].

Even though breast cancer is considered to be a fatal disease with a high mortality
rate, the chances of survival are improved significantly if it can be detected at an early
stage. Various imaging modalities like ultrasound, MRI, computerized tomography,
etc. can be used for diagnosis of breast abnormalities butmammography is considered
to be the best choice for detection due to its higher sensitivity [16–23].Mammography
is an X-ray imaging technique used to detect the breast abnormalities. Mammograms
display the adipose (fatty) and fibroglandular tissues of the breast along with the
present abnormalities.

On the basis of density, breast tissue can be classified into the following categories:

(a) Fatty (F)/Dense (D) (Two-class classification)
(b) Fatty (F)/Fatty-glandular (FG)/Dense-glandular (DG) (Three-class classifica-

tion)
(c) Almost entirely fatty (B-I)/Some fibro-glandular tissue (B-II)/Heterogeneously

dense breast (B-III)/Extremely dense breast (B-IV) (Four-class BI-RADS classi-
fication)

The typical fatty tissue being translucent toX-rays appears dark on amammogram
where as the dense tissues appear bright on the mammograms. The fatty-glandular
breast tissue is an intermediate stage between fatty and dense tissues therefore a
typical fatty-glandular breast tissue appears dark with some bright streaks on the
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Fig. 1 Sample mammographic images depicting typical cases. a Typical fatty tissue ‘mdb012’. b
Typical fatty-glandular tissue ‘mdb014’. c Typical dense-glandular tissue ‘mdb108’

mammogram. The mammographic appearances of the typical breast tissues based
on density are depicted in Fig. 1.

The discrimination between different density patterns by visual analysis is highly
subjective and depends on the experience of the radiologist. The participating radi-
ologist i.e. one of the co-author of this work, opined that, in case of atypical cases
where there is a high overlap in appearances of the different density patterns, a clear
discrimination cannot be made by visual analysis easily. The sample mammographic
images depicting the atypical cases are shown in Fig. 2.

Fig. 2 Sample mammographic images depicting atypical cases a Atypical fatty tissue ‘mdb088’.
b Atypical fatty-glandular tissue ‘mdb030’. c Atypical dense-glandular tissue ‘mdb100’
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In order to correctly identify and analyze these atypical cases various computer
aided diagnostic (CAD) systems have been developed for breast tissue density clas-
sification. These proposed CAD systems can be categorized as: (a) CAD system
designs based on segmented breast tissue versus CAD system designs based on
Regions of Interest (ROIs). (b) CAD system designs for two class classification
(fatty/dense) versus CAD system designs for three class classification (fatty/fatty-
glandular/dense-glandular) versus CAD system designs for four class classification
based on BI-RADS (B-I: almost entirely fatty/B-II: some fibro-glandular tissue/B-
III: heterogeneously dense breast/B-IV: extremely dense breast). (c) CAD system
designs using standard benchmark dataset (Mammographic image analysis society
(MIAS), Digital database of screening mammograms (DDSM), Oxford, Nijmegen)
versus CAD system designs using data collected by individual research groups. A
brief description of the related studies is given in Tables1, 2 and 3.

From the above tables, it can be observed that most of the researchers have used
a subset of MIAS and DDSM databases and have worked on the segmented breast
tissue. It is also observed that only a few studies report CAD systems based on ROIs

Table 1 Summary of studies carried out for two-class breast tissue density classification

Investigators Dataset description

Database No. of images ROI size Classifier OCA (%)

Miller and Astley [24] Collected by
investigator

40 SBT Bayesian 80.0

Bovis and Singh [25] DDSM
(SBMD)

377 SBT ANN 96.7

Castella et al. [26] Collected by
investigator

352 256 × 256 LDA 90.0

Oliver et al. [27] MIAS
(SBMD)

322 SBT Bayesian 91.0

DDSM
(SBMD)

831 84.0

Mustra et al. [28] MIAS
(SBMD)

322 512 × 384 Naïve
Bayesian

91.6

KBD-FER
(Collected by
investigator)

144 IB1 97.2

Sharma and Singh [29] MIAS
(SBMD)

322 200 × 200 SMO-
SVM

96.4

Sharma and Singh [30] MIAS
(SBMD)

212 200 × 200 kNN 97.2

Kriti et al. [31] MIAS
(SBMD)

322 200 × 200 SVM 94.4

Virmani et al. [32] MIAS
(SBMD)

322 200 × 200 kNN 96.2

Note SBMD Standard benchmark database. SBT Segmented breast tissue. OCA Overall Classifica-
tion Accuracy
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Table 2 Summary of studies carried out for three-class breast tissue density classification

Investigators Dataset description

Database No. of images ROI size Classifier OCA (%)

Blot and Zwiggelaar
[33]

MIAS (SBMD) 265 SBT kNN 63.0

Bosch et al. [34] MIAS (SBMD) 322 SBT SVM 91.3

Muhimmah and
Zwiggelaar [35]

MIAS (SBMD) 321 SBT DAG-
SVM

77.5

Subashini et al. [36] MIAS (SBMD) 43 SBT SVM 95.4

Tzikopoulos et al.
[37]

MIAS (SBMD) 322 SBT SVM 84.4

Li [38] MIAS (SBMD) 42 SBT KSFD 94.4

Mustra et al. [28] MIAS (SBMD) 322 512 × 384 IB1 82.0

Silva and Menotti
[39]

MIAS (SBMD) 320 300 × 300 SVM 77.1

Note SBMD Standard benchmark database. SBT Segmented breast tissue. OCA Overall Classifica-
tion Accuracy

Table 3 Summary of studies carried out for four-class breast tissue density classification

Investigators Dataset description

Database No. of images ROI size Classifier OCA (%)

Karssemeijer [40] Nijmegen
(SBMD)

615 SBT kNN 80.0

Wang et al. [41] Collected by
investigator

195 SBT NN 71.0

Petroudi et al. [42] Oxford (SBMD) 132 SBT Nearest
neighbor

76.0

Oliver et al. [43] DDSM (SBMD) 300 SBT kNN+ID3 47.0

Bosch et al. [34] MIAS (SBMD) 322 SBT SVM 95.4

DDSM (SBMD) 500 84.7

Castella et al. [26] Collected by
investigator

352 256 × 256 LDA 83.0

Oliver et al. [27] MIAS (SBMD) 322 SBT Bayesian 86.0

DDSM (SBMD) 831 77.0

Mustra et al. [28] MIAS (SBMD) 322 512 × 384 IB1 79.2

KBD-FER
(collected by
investigator)

144 76.4

Note SBMD Standard benchmark database. SBT Segmented breast tissue. OCA Overall Classifi-
cation Accuracy

extracted from the breast [26, 28–32, 39] even though it has been shown that the
ROIs extracted from the center of the breast result in highest performance as this
region of the breast is densest and extraction of ROIs also eliminates an extra step of
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preprocessing included in obtaining the segmented breast tissue for pectoral muscle
removal [44].

The chapter is organized into three sections. Section2 presents the methodology
adopted for present work, i.e. (a) description of the dataset on which the work
has been carried out (b) description of texture features extracted from each ROI
image and (c) description of the classificationmodule. Section3 describes the various
experiments carried out in the present work for two-class and three-class breast tissue
density classification using statistical texture features. Finally, Sect. 4 reports the
conclusions drawn from the exhaustive experiments carried out in the present work
for two-class and three-class breast tissue density classification.

2 Methodology

2.1 Dataset Description

In the present work a publicly available database, mini-MIAS has been used. This
database consists of the Medio Lateral Oblique (MLO) views of both the breasts of
161 women i.e. a total of 322 mammographic images. These images are selected
from the UK National Breast Screening Programme and were digitized using The
Joyce-Loebl scanningmicrodensitometer. The images in the database are categorized
into three categories as per their density namely fatty (106 images), fatty-glandular
(104 images) and dense-glandular (112 images). Each image in the database is of
size 1024 × 1024 pixels, with 256 gray scale tones and a horizontal and vertical
resolution of 96 dpi. The database also includes location of abnormality, the radius
of the circle enclosing the abnormality, its severity and nature of the tissue [45]. In
the present work CAD system designs have been proposed for (a) two-class breast
tissue density classification i.e. (fatty and dense class) and (b) three-class breast
tissue density classification i.e. (fatty, fatty-glandular and dense-glandular classes).
For implementing CAD systems for two-class breast tissue density classification, the
fatty-glandular and dense-glandular classes are combined and considered as dense
class resulting in 106 mammograms belonging to fatty class and 216 mammograms
belonging to dense class. The description of the dataset, used for two-class and
three-class CAD system designs is shown in Fig. 3.

2.2 Region of Interest (ROI) Selection

The ROI size is selected carefully considering the fact that it should provide a good
population of pixels for computing texture features [44]. Different ROI sizes that
have been selected in the literature for classification are 256 × 256 pixels [26], 512
× 384 pixels [28], 200 × 200 pixels [29–32] and 300 × 300 pixels [39]. Other
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Fig. 3 Dataset description. a Two-class breast tissue density classification. b Three-class breast
tissue density classification

researchers have pre-processed the mammograms by removal of the pectoral muscle
and the background using segmented breast tissue for feature extraction [24, 25, 27,
33–38, 40–43]. The participating radiologist, one of the coauthors opined that for
accessing the breast tissue density patterns, visual analysis of texture patterns of the
center of the breast tissue is carried out during routine practice. Accordingly, for
the present work, ROIs of size 200 × 200 pixels are manually extracted from each
mammogram. The ROIs are selected from the center of the breast tissue as it has
also been asserted by many researchers in their research that the center region of
the breast tissue is the densest region and selecting ROI from this part of the breast
results in highest performance of the proposed algorithms [29–32, 44]. The selection
and extraction of ROI from the breast tissue is shown in Fig. 4.

The sample images of ROIs extracted from the mammographic images are shown
in Fig. 5.

2.3 Experimental Workflow for Design of CAD System
for Two-Class and Three-Class Breast Tissue Density
Classification

With the advancement in computer technology and artificial intelligence techniques
there has been a substantial increase in the opportunities for researchers to investigate
the potential of CAD systems for texture analysis and tissue characterization of
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Fig. 4 Sample mammographic image with ROI marked

Fig. 5 Sample ROI images. a Fatty tissue ‘mdb012’, b Fatty-glandular tissue ‘mdb014’, c Dense-
glandular tissue ‘mdb108’

radiological images [46–58]. Tissue characterization refers to quantitative analysis
of the tissue imaging features resulting in accurate distinction between different types
of tissues. Thus, the result of tissue characterization is interpreted using numerical
values. The overall aim of developing a computerized tissue characterization system
is to provide additional diagnostic information about the underlying tissue which
cannot be captured by visual inspection of medical images.
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Fig. 6 Experimental workflow for design of CAD systems for two-class and three class breast
tissue density classification

The CAD systems are used in themedical imaging as a second opinion tool for the
radiologists to gain confidence in their diagnosis. In radiology, CADsystems improve
the diagnostic accuracy for medical image interpretation helping the radiologists in
detecting the lesions present in the images which might be missed by them.

In general,CADsystemdesign consists of feature extractionmodule, feature space
dimensionality reduction module and classification module. For implementing the
proposedCADsystemdesign for breast density classification, 322ROIs are extracted
from322 images of theMIASdatabase. The block diagramof experimentalworkflow
followed in the present work is shown in Fig. 6.

For the present CAD system design, ROIs are manually extracted from the mam-
mograms of the MIAS database. In feature extraction module statistical features are
extracted from the ROIs. In feature space dimensionality reduction module, PCA is
applied to the feature set (training data) to derive its principal components (PCs).
The reduced testing dataset is obtained by projecting the data points of feature set
(testing data) in the direction of the PCs of feature set (training data). In feature
classification module 4 classifiers i.e. k-nearest neighbor (kNN) classifier, proba-
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bilistic neural network (PNN) classifier, support vector machine (SVM) classifier
and smooth support vector machine (SSVM) classifier are used for the classification
task. These classifiers are trained and tested using the reduced texture feature vectors
(RTFVs) i.e. set of optimal PCs obtained after applying PCA.

2.3.1 Feature Extraction Module

The feature extraction is the process used to transform the visually extractable and
non-extractable features into mathematical descriptors. These descriptors are either
shape-based (morphological features) or intensity distribution based (textural fea-
tures). There are a variety of methods to extract the textural features including statis-
tical, signal processing based and transform domain methods. The different methods
of feature extraction are depicted in Fig. 7.

In the present work, the statistical methods are used to extract the texture features
from an image based on the gray level intensities of the pixels of that image.

First Order Statistics (FOS) Features

Six features namely average gray level, standard deviation, smoothness, kurtosis and
entropy are computed for each ROI [59].

Fig. 7 Different feature extraction methods. Note: GLCM: Gray level co-occurrence matrix,
GLRLM: Gray level run length matrix, NGTDM: Neighborhood gray tone difference matrix, SFM:
Statistical feature matrix, FPS: Fourier power spectrum
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Second Order Statistics-Gray Level Co-occurrence Matrix (GLCM) Features

To derive the statistical texture features from GLCM, spatial relationship between
two pixels is considered. The GLCM tabulates the number of times the different
combinations of pixel pairs of a specific gray level occur in an image for various
directions θ = 0◦, 45◦, 90◦, 135◦ and different distances d = 1, 2, 3 etc. A total
of 13 GLCM features namely angular second moment (ASM), correlation, contrast,
variance, inverse differencemoment, sumaverage, sumvariance, difference variance,
entropy, sum entropy, difference entropy, information measures of correlation-1 and
information measures of correlation-2 are computed from each ROI [60–62].

Higher Order Statistics-Gray Level Run Length Matrix (GLRLM) Features

To derive the statistical texture features from the GLRLM, spatial relationship
between more than two pixels is considered. In a given direction, GLRLM mea-
sures the number of times there are runs of consecutive pixels with the same value.
Total of 11GLRLM features namely short run emphasis, long run emphasis, low gray
level run emphasis, high gray level run emphasis, short run low gray level emphasis,
short run high gray level emphasis, long run low gray level emphasis, long run high
gray level emphasis, gray level non uniformity, run length non-uniformity and run
percentage are computed from each ROI [63, 64].

Edge Features (Absolute Gradient)

The edges in an image contain more information about the texture than other parts
of the image. The gradient of an image measures the spatial variation of gray levels
across an image. At an edge, there is an abrupt change in gray level of the image. If
the gray level variation at some point is abrupt then that point is said to have a high
gradient and if the variation is smooth the point is at low gradient. Absolute gradient
is used to judge whether the gray level variation in an image is smooth or abrupt. The
texture features computed are absolute gradient mean and absolute gradient variance
[65].

Neighborhood Gray Tone Difference Matrix (NGTDM) Features

NGTDM represents a difference in grayscale between pixels with a certain gray
scale and the neighboring pixels. Features extracted from NGTDM are: coarseness,
contrast, business, complexity and strength [26, 66].
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Statistical Feature Matrix (SFM) Features

SFM is used to measure the statistical properties of pixels at several distances within
an image. The features computed from SFM are coarseness, contrast, periodicity and
roughness.

Gray Level Difference Statistics (GLDS)

These features are based on the co-occurrence of a pixel pair having a given absolute
difference in gray-levels separated by a particular distance. The extracted features
are: homogeneity, contrast, energy, entropy and mean [67, 68].

2.3.2 Feature Space Dimensionality Reduction Module

The texture feature vector (TFV) formed after computing the texture features in the
feature extractionmodulemay contain some redundant and correlated features which
when used in the classification task can degrade the performance of the proposed
CAD system. These redundant features give no extra information that proves to be
helpful in discriminating the textural changes exhibited by different density patterns.
Hence, to remove these redundant features and obtain the optimal attributes for the
classification task, PCA is employed [69–71]. Steps used in the PCA algorithm are:

(1) Normalize each feature in dataset to zero mean and unity variance.
(2) Obtain co-variance matrix of the training dataset.
(3) Obtain Eigen values and Eigen vectors from the co-variance matrix. Eigen vec-

tors give the directions of the PCs.
(4) Project the data points in testing dataset in the direction of the PCs of training

dataset.

The obtained PCs are uncorrelated to each other and the 1st PC has the largest
possible variance out of all the successive PCs. The optimal number of PCs is deter-
mined by performing repeated experiments by going through first few PCs i.e. by
first considering the first two PCs, then first three PCs and so on, and evaluating the
performance of the classifier for each experiment.

2.3.3 Feature Classification Module

Classification is a machine learning technique, used to predict the class membership
of unknown data instances based on the training set of data containing instances
whose class membership is known. In this module, different classifiers like kNN,
PNN, SVM and SSVM are employed to classify the unknown testing instances of
mammographic images. The extracted features are normalized in the range [0, 1]
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by using min-max normalization procedure to avoid any bias caused by unbalanced
feature values. The different classifiers employed in the present work are described
as below:

k-Nearest Neighbor (kNN) Classifier

The kNNclassifier is based on the idea of estimating the class of an unknown instance
from its neighbors. It tries to cluster the instances of feature vector into disjoint classes
with an assumption that instances of feature vector lying close to each other in feature
space represent instances belonging to the same class. The class of an unknown
instance in testing dataset is selected to be the class of majority of instances among
its k-nearest neighbors in the training dataset. The advantage of kNN is its ability
to deal with multiple class problems and is robust to noisy data as it averages the
k-nearest neighbors [71–74]. Euclidean distance is used as a distance metric. The
classification performance of kNN classifier depends on the value of k. In the present
work, the optimal value of k and number of PCs to be retained is determined by
performing repeated experiments for the values of k ∈ {1, 2, . . . , 9, 10} and number
of PCs ∈ {1, 2, . . . , 14, 15}. If same accuracy is obtained for more than one value of
k, smallest value of k is used to obtain the result.

Probabilistic Neural Network (PNN) Classifier

The PNN is a supervised feed-forward neural network used for estimating the prob-
ability of class membership [75–77]. The architecture of PNN has four layers: input
layer, pattern layer, summation layer and output layer. Primitive values are passed to
the ‘n’ neurons in the input unit. Values from the input unit are passed to the hidden
units in the pattern layer where responses for each unit are calculated. There are
‘p’ number of neurons in the pattern layer, one for each class. In the pattern layer
a probability density function for each class is defined based on the training dataset
and optimized kernel width parameter. Values of each hidden unit are summed in
the summation layer to get response in each category. Maximum response is taken
from all categories in the decision layer to get the class of the unknown instance. The
optimal choice of spread parameter (Sp) i.e. the kernel width parameter is critical
for the classification using PNN. In the present work, the optimal values used for Sp
and optimal number of PCs to design a PNN classifier are determined by perform-
ing repeated experiments for values of Sp ∈ {1, 2, . . . , 9, 10} and number of PCs
∈ {1, 2, . . . , 14, 15}.

Support Vector Machine (SVM) Classifier

The SVM classifier belongs to a class of supervised machine learning algorithms.
It is based on the concept of decision planes that define the decision boundary.
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In SVM, kernel functions are used to map the non-linear training data from input
space to a high dimensionality feature space. Some common kernels are polynomial,
Gaussian radial basis function and sigmoid. In the present work, SVM classifier
is implemented using LibSVM library [78] and the performance of the Gaussian
Radial Basis Function kernel is investigated. The critical step for obtaining a good
generalization performance is the correct choice of regularization parameter C and
kernel parameter γ. The regularization parameter C tries to maximize the margin
while keeping the training error low. In the present work, ten-fold cross validation
is carried out on the training data, for each combination of (C, γ) such that, C
∈ {2−4, 2−3, . . . , 215} and γ ∈ {2−12, 2−11, . . . , 24}. This grid search procedure in
parameter space gives the optimum values of C and γ for which training accuracy is
maximum [79–83].

Smooth Support Vector Machine (SSVM) Classifier

To solve importantmathematical problems related to programming, smoothingmeth-
ods are extensively used. SSVMworks on the idea of smooth unconstrained optimiza-
tion reformulation based on the traditional quadratic program which is associated
with SVM [84, 85]. For implementing SSVM classifier, the SSVM toolbox devel-
oped by Laboratory of Data Science and Machine Intelligence, Taiwan was used
[86]. Similar to SVM implementation in case of SSVM also, ten-fold cross vali-
dation is carried out on training data for each combination of (C, γ) such that, C
∈ {2−4, 2−3, . . . , 215} and γ ∈ {2−12, 2−11, . . . , 24}. This grid search procedure in
parameter space gives the optimum values of C and γ for which training accuracy is
maximum.

Classifier Performance Evaluation Criteria

The performance of the CAD system for two-class and three class breast tissue den-
sity classification can be measured using overall classification accuracy (OCA) and
individual class accuracy (ICA). These values can be calculated using the confusion
matrix (CM).

OCA = � No. of correctly classified images of each class

Total images in testing dataset
(1)

ICA = No. of correctly classified images of one class

Total no. of images in the testing dataset for that class
(2)
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3 Results

Rigorous experimentation was carried out in the present work to characterize the
mammographic images as per breast tissue density. The experiments carried out
in the present work are described in Tables4 and 5, respectively for two-class and
three-class breast tissue density classification.

3.1 Experiments Carried Out for Two-Class Breast Tissue
Density Classification

3.1.1 Experiment 1: To Obtain the Classification Performance
of Statistical Features for Two-Class Breast Tissue Density
Classification Using kNN, PNN, SVM and SSVM Classifiers

In this experiment, classification performance of TFV containing different statistical
features is evaluated for two-class breast tissue density classification using different
classifiers. The results of the experiment are shown in Table6. It can be observed
from the table that for statistical features, the overall classification accuracy of 92.5,
91.3, 90.6 and 92.5% is achieved using kNN, PNN, SVM and SSVM classifiers,
respectively. It can also be observed that the highest in individual class accuracy
for fatty class is 83.0% with SSVM classifier and highest individual class accuracy
for dense class is 100%, using PNN classifier. Out of total 161 testing instances,
12 instances (12/161) are misclassified in case of kNN, 14 instances (14/161) are
misclassified in case of PNN, 16 instances (16/161) are misclassified in case of SVM
and 12 instances (12/161) are misclassified in case of SSVM classifier.

Table 4 Description of experiments carried out for two-class breast tissue density classification

Experiment 1 To obtain the classification performance of statistical features for two-class
breast tissue density classification using kNN, PNN, SVM and SSVM classifiers

Experiment 2 To obtain the classification performance of statistical features for two-class
breast tissue density classification using PCA-kNN, PCA-PNN, PCA-SVM and
PCA-SSVM classifiers

Table 5 Description of experiments carried out for three-class breast tissue density classification

Experiment 1 To obtain the classification performance of statistical features for three-class
breast tissue density classification using kNN, PNN, SVM and SSVM classifiers

Experiment 2 To obtain the classification performance of statistical features for three-class
breast tissue density classification using PCA-kNN, PCA-PNN, PCA-SVM and
PCA-SSVM classifiers
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Table 6 Classification performance of statistical features using kNN, PNN, SVM and SSVM
classifiers for two-class breast tissue density classification

Classifier CM OCA (%) ICAF (%) ICAD (%)

F D

kNN F 43 10 92.5 81.1 98.1

D 2 106

PNN F 39 14 91.3 73.5 100

D 0 108

SVM F 41 12 90.6 77.3 96.2

D 4 104

SSVM F 44 9 92.5 83.0 97.2

D 3 105

Note CM Confusion matrix, F Fatty class, D Dense class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAD Individual class accuracy for dense class

3.1.2 Experiment 2: To Obtain the Classification Performance
of Statistical Features for Two-Class Breast Tissue Density
Classification Using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM Classifiers

In this experiment, classification performance of reduced texture feature vector
(RTFV) derived by applying PCA to TFV containing different statistical features
is evaluated for two-class breast tissue density classification using different classi-
fiers. The results are shown in Table7.

It can be observed from the table that the overall classification values of 91.9, 91.3,
93.7 and 94.4% have been achieved using the PCA-kNN, PCA-PNN, PCA-SVM

Table 7 Classification performance of statistical features using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM classifiers for two-class breast tissue density classification

Classifier l CM OCA (%) ICAF (%) ICAD (%)

F D

kNN 6 F 43 10 91.9 81.1 97.2

D 3 105

PNN 4 F 39 14 91.3 73.5 100

D 0 108

SVM 7 F 43 10 93.7 81.1 100

D 0 108

SSVM 10 F 47 6 94.4 88.6 97.2

D 3 105

Note l No. of PCs, CM Confusion matrix, F Fatty class, D Dense class, OCA Overall classification
accuracy, I C AF Individual class accuracy for fatty class, I C AD Individual class accuracy for dense
class
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and PCA-SSVM classifiers, respectively. It can also be observed that the highest
individual class accuracy for fatty class is 88.6% using PCA-SSVM classifier and
that for dense class is 100% using PCA-PNN and PCA-SVM classifiers. Out of total
161 testing instances, 13 instances (13/161) are misclassified in case of PCA-kNN,
14 instances (14/161) are misclassified in case of PCA-PNN, 10 instances (10/161)
are misclassified in case of PCA-SVM and 9 instances (9/161) are misclassified in
case of PCA-SSVM classifier.

From the results obtained from the above experiments, it can be observed that for
two-class breast tissue density, PCA-SSVM classifier achieves highest classification
accuracy of 94.4% using first 10 PCs.

3.2 Experiments Carried Out for Three-Class Breast Tissue
Density Classification

3.2.1 Experiment 1: To Obtain the Classification Performance
of Statistical Features for Three-Class Breast Tissue Density
Classification Using kNN, PNN, SVM and SSVM Classifiers

In this experiment, the classification performance of TFV containing different sta-
tistical features is evaluated for three-class breast tissue density classification using
different classifiers. The results are shown in Table8.

It can be observed from the table that the overall classification accuracy of 86.9,
85.0, 83.8 and 82.6% is achieved using kNN, PNN, SVM and SSVM classifiers,
respectively. Thehighest individual class accuracy for fatty class is 94.3%usingSVM
classifier, for fatty-glandular class the highest individual class accuracy achieved is
88.4% using SSVM classifier and for the dense-glandular class, highest individ-
ual class accuracy achieved is 96.4% using kNN classifier. Out of total 161 test-
ing instances, 21 instances (21/161) are misclassified in case of kNN, 24 instances
(24/161) are misclassified in case of PNN, 26 instances (26/161) are misclassified in
case of SVM and 28 instances (28/161) are misclassified in case of SSVM classifier.

3.2.2 Experiment 2: To Obtain the Classification Performance
of Statistical Features for Three-Class Breast Tissue Density
Classification Using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM Classifiers

In this experiment, the classification performance of RTFV derived by applying PCA
to TFV containing different statistical features is evaluated for three-class breast tis-
sue density classification using different classifiers. The results are shown in Table9.
It can be observed from the table that the overall classification of 85.0, 84.4, 86.3
and 85.0% is achieved using PCA-kNN, PCA-PNN, PCA-SVM and PCA-SSVM
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Table 8 Classification performance of statistical features using kNN, PNN, SVM and SSVM
classifiers for three-class breast tissue density classification

Classifier CM OCA
(%)

ICAF
(%)

ICAFG
(%)

ICADG
(%)

F FG DG

kNN F 46 2 5 86.9 86.7 76.9 96.4

FG 2 40 10

DG 0 2 54

PNN F 41 8 4 85.0 77.3 82.6 94.6

FG 1 43 8

DG 0 3 53

SVM F 50 3 0 83.8 94.3 67.3 89.2

FG 12 35 5

DG 1 5 50

SSVM F 39 11 3 82.6 73.5 88.4 85.7

FG 3 46 3

DG 1 7 48

Note CM Confusion matrix, F Fatty class, FG Fatty–glandular class, DG Dense-glandular class,
OCAOverall classification accuracy, ICAF Individual class accuracy for fatty class, ICAFG Individ-
ual class accuracy for fatty-glandular class, ICADG Individual class accuracy for dense-glandular
class

Table 9 Classification performance of statistical features using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM classifiers for three-class breast tissue density classification

Classifier l CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

kNN 9 F 44 4 5 85.0 83.0 73.0 98.2

FG 3 38 11

DG 1 0 55

PNN 6 F 43 6 4 84.4 81.1 84.6 87.5

FG 1 44 7

DG 0 7 49

SVM 4 F 47 4 2 86.3 88.6 76.9 92.8

FG 6 40 6

DG 0 4 52

SSVM 5 F 43 9 1 85.0 81.1 84.6 89.2

FG 4 44 4

DG 0 6 50

Note l Optimal number of PCs, CM Confusion matrix, F Fatty class, FG Fatty–glandular class,
DG Dense-glandular class, OCA Overall classification accuracy, ICAF Individual class accuracy
for fatty class, ICAFG Individual class accuracy for fatty-glandular class, ICADG Individual class
accuracy for dense-glandular class
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classifiers, respectively. The highest individual class accuracy for fatty class is 88.6%
using PCA-SVMclassifier, for fatty-glandular class the highest individual class accu-
racy achieved is 84.6% using PCA-PNN and PCA-SSVM classifiers and for the
dense-glandular class, highest individual class accuracy achieved is 98.2% using
PCA-kNN classifier. Out of total 161 testing instances, 24 instances (24/161) are
misclassified in case of PCA-kNN, 25 instances (25/161) are misclassified in case
of PCA-PNN, 22 instances (22/161) are misclassified in case of PCA-SVM and 24
instances (24/161) are misclassified in case of PCA-SSVM classifier.

For three-class breast tissue density classification, it can be observed from the
above experiments that highest classification accuracy of 86.9% is achieved using
the kNN classifier, however it should also be noted that PCA-SVMclassifier achieves
the highest classification accuracy of 86.3% by using only the first 4 PCs obtained
by applying PCA to the TFV of statistical features. Thus CAD system design based
on PCA-SVM classifier can be considered to be the best choice for three-class breast
tissue density classification.

Fig. 8 Proposed SSVM based CAD system design for two-class breast tissue density classification
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4 Conclusion

From the rigorous experiments carried out in the present work, it can be observed
that for two-class breast tissue density, PCA-SSVM based CAD system using first
10 PCs obtained by applying PCA to the TFV derived using statistical features yields
highest OCA of 94.4% using mammographic images. It could also be observed that
the PCA-SVM based CAD system using first 4 PCs obtained by applying PCA to the
TFV derived using statistical features yields highest OCA of 86.3% for three-class
breast tissue density classification using mammographic images. It can be concluded
that statistical features are significant to account for the textural changes exhibited
by the fatty and dense breast tissues. The proposed CAD system designs derived
using the above results are shown in Figs. 8 and 9 for two-class and three-class breast
tissue density classification, respectively.

Fig. 9 Proposed CAD system design for three-class breast tissue density classification
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The promising results obtained by the proposed CAD system designs indicate
their usefulness to assist radiologists for characterization of breast tissue density
during routine clinical practice.
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